From 951942821d3a8c11d2fb2470a9e4803734f2deef Mon Sep 17 00:00:00 2001 From: Colombo Date: Fri, 20 Dec 2019 11:04:26 +0400 Subject: [PATCH] 1 --- models/Model_SAEHD/Model.py | 18 +++++++----------- 1 file changed, 7 insertions(+), 11 deletions(-) diff --git a/models/Model_SAEHD/Model.py b/models/Model_SAEHD/Model.py index 91f52e0..437b701 100644 --- a/models/Model_SAEHD/Model.py +++ b/models/Model_SAEHD/Model.py @@ -64,10 +64,7 @@ class SAEHDModel(ModelBase): default_face_style_power = self.options.get('face_style_power', 0.0) default_bg_style_power = self.options.get('bg_style_power', 0.0) - if is_first_run or ask_override: - default_lr_dropout = self.options.get('lr_dropout', False) - self.options['lr_dropout'] = io.input_bool ( f"Use learning rate dropout? (y/n, ?:help skip:{yn_str[default_lr_dropout]} ) : ", default_lr_dropout, help_message="When the face is trained enough, you can enable this option to get extra sharpness for less amount of iterations.") - + if is_first_run or ask_override: default_random_warp = self.options.get('random_warp', True) self.options['random_warp'] = io.input_bool (f"Enable random warp of samples? ( y/n, ?:help skip:{yn_str[default_random_warp]}) : ", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness for less amount of iterations.") @@ -87,8 +84,8 @@ class SAEHDModel(ModelBase): self.options['clipgrad'] = io.input_bool (f"Enable gradient clipping? (y/n, ?:help skip:{yn_str[default_clipgrad]}) : ", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.") else: self.options['clipgrad'] = False + else: - self.options['lr_dropout'] = self.options.get('lr_dropout', default_lr_dropout) self.options['random_warp'] = self.options.get('random_warp', True) self.options['true_face_training'] = self.options.get('true_face_training', default_true_face_training) self.options['face_style_power'] = self.options.get('face_style_power', default_face_style_power) @@ -455,10 +452,9 @@ class SAEHDModel(ModelBase): psd_target_dst_anti_masked = self.model.pred_src_dst*(1.0 - target_dstm) if self.is_training_mode: - lr_dropout = 0.3 if self.options['lr_dropout'] else 0.0 - self.src_dst_opt = RMSprop(lr=5e-5, lr_dropout=lr_dropout, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1) - self.src_dst_mask_opt = RMSprop(lr=5e-5, lr_dropout=lr_dropout, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1) - self.D_opt = RMSprop(lr=5e-5, lr_dropout=lr_dropout, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1) + self.src_dst_opt = RMSprop(lr=5e-5, lr_dropout=0.3, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1) + self.src_dst_mask_opt = RMSprop(lr=5e-5, lr_dropout=0.3, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1) + self.D_opt = RMSprop(lr=5e-5, lr_dropout=0.3, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1) src_loss = K.mean ( 10*dssim(kernel_size=int(resolution/11.6),max_value=1.0)( target_src_masked_opt, pred_src_src_masked_opt) ) src_loss += K.mean ( 10*K.square( target_src_masked_opt - pred_src_src_masked_opt ) ) @@ -539,7 +535,7 @@ class SAEHDModel(ModelBase): t_img_warped = t.IMG_WARPED_TRANSFORMED if self.options['random_warp'] else t.IMG_TRANSFORMED self.set_training_data_generators ([ - SampleGeneratorFace(training_data_src_path, sort_by_yaw_target_samples_path=training_data_dst_path if sort_by_yaw else None, + SampleGeneratorFace(training_data_src_path, sort_by_yaw_target_samples_path=training_data_dst_path if sort_by_yaw else None, use_caching=False, random_ct_samples_path=training_data_dst_path if self.options['ct_mode'] != 'none' else None, debug=self.is_debug(), batch_size=self.batch_size, sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, scale_range=np.array([-0.05, 0.05])+self.src_scale_mod / 100.0 ), @@ -548,7 +544,7 @@ class SAEHDModel(ModelBase): {'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M), 'resolution': resolution } ] ), - SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, + SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, use_caching=False, sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, ), output_sample_types = [ {'types' : (t_img_warped, face_type, t_mode_bgr), 'resolution':resolution}, {'types' : (t.IMG_TRANSFORMED, face_type, t_mode_bgr), 'resolution': resolution},