mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
refactorings
This commit is contained in:
parent
e1da9c56b4
commit
947feac047
11 changed files with 254 additions and 215 deletions
|
@ -1,61 +1,95 @@
|
|||
import collections
|
||||
from enum import IntEnum
|
||||
import numpy as np
|
||||
import cv2
|
||||
import imagelib
|
||||
|
||||
from facelib import LandmarksProcessor
|
||||
from facelib import FaceType
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
import imagelib
|
||||
from facelib import FaceType, LandmarksProcessor
|
||||
|
||||
|
||||
"""
|
||||
output_sample_types = [
|
||||
{} opts,
|
||||
...
|
||||
]
|
||||
|
||||
opts:
|
||||
'types' : (S,S,...,S)
|
||||
where S:
|
||||
'IMG_SOURCE'
|
||||
'IMG_WARPED'
|
||||
'IMG_WARPED_TRANSFORMED''
|
||||
'IMG_TRANSFORMED'
|
||||
'IMG_LANDMARKS_ARRAY' #currently unused
|
||||
'IMG_PITCH_YAW_ROLL'
|
||||
|
||||
'FACE_TYPE_HALF'
|
||||
'FACE_TYPE_FULL'
|
||||
'FACE_TYPE_HEAD' #currently unused
|
||||
'FACE_TYPE_AVATAR' #currently unused
|
||||
|
||||
'FACE_MASK_FULL'
|
||||
'FACE_MASK_EYES' #currently unused
|
||||
|
||||
'MODE_BGR' #BGR
|
||||
'MODE_G' #Grayscale
|
||||
'MODE_GGG' #3xGrayscale
|
||||
'MODE_M' #mask only
|
||||
'MODE_BGR_SHUFFLE' #BGR shuffle
|
||||
|
||||
'resolution' : N
|
||||
|
||||
'motion_blur' : (chance_int, range) - chance 0..100 to apply to face (not mask), and range [1..3] where 3 is highest power of motion blur
|
||||
|
||||
"""
|
||||
|
||||
class SampleProcessor(object):
|
||||
class TypeFlags(IntEnum):
|
||||
SOURCE = 0x00000001,
|
||||
WARPED = 0x00000002,
|
||||
WARPED_TRANSFORMED = 0x00000004,
|
||||
TRANSFORMED = 0x00000008,
|
||||
LANDMARKS_ARRAY = 0x00000010, #currently unused
|
||||
PITCH_YAW_ROLL = 0x00000020,
|
||||
|
||||
RANDOM_CLOSE = 0x00000040, #currently unused
|
||||
MORPH_TO_RANDOM_CLOSE = 0x00000080, #currently unused
|
||||
|
||||
FACE_TYPE_HALF = 0x00000100,
|
||||
FACE_TYPE_FULL = 0x00000200,
|
||||
FACE_TYPE_HEAD = 0x00000400, #currently unused
|
||||
FACE_TYPE_AVATAR = 0x00000800, #currently unused
|
||||
|
||||
FACE_MASK_FULL = 0x00001000,
|
||||
FACE_MASK_EYES = 0x00002000, #currently unused
|
||||
|
||||
MODE_BGR = 0x00010000, #BGR
|
||||
MODE_G = 0x00020000, #Grayscale
|
||||
MODE_GGG = 0x00040000, #3xGrayscale
|
||||
MODE_M = 0x00080000, #mask only
|
||||
MODE_BGR_SHUFFLE = 0x00100000, #BGR shuffle
|
||||
class Types(IntEnum):
|
||||
NONE = 0
|
||||
|
||||
IMG_TYPE_BEGIN = 1
|
||||
IMG_SOURCE = 1
|
||||
IMG_WARPED = 2
|
||||
IMG_WARPED_TRANSFORMED = 3
|
||||
IMG_TRANSFORMED = 4
|
||||
IMG_LANDMARKS_ARRAY = 5 #currently unused
|
||||
IMG_PITCH_YAW_ROLL = 6
|
||||
IMG_TYPE_END = 6
|
||||
|
||||
FACE_TYPE_BEGIN = 7
|
||||
FACE_TYPE_HALF = 7
|
||||
FACE_TYPE_FULL = 8
|
||||
FACE_TYPE_HEAD = 9 #currently unused
|
||||
FACE_TYPE_AVATAR = 10 #currently unused
|
||||
FACE_TYPE_END = 10
|
||||
|
||||
FACE_MASK_BEGIN = 10
|
||||
FACE_MASK_FULL = 11
|
||||
FACE_MASK_EYES = 12 #currently unused
|
||||
FACE_MASK_END = 12
|
||||
|
||||
MODE_BEGIN = 13
|
||||
MODE_BGR = 13 #BGR
|
||||
MODE_G = 14 #Grayscale
|
||||
MODE_GGG = 15 #3xGrayscale
|
||||
MODE_M = 16 #mask only
|
||||
MODE_BGR_SHUFFLE = 17 #BGR shuffle
|
||||
MODE_END = 17
|
||||
|
||||
|
||||
OPT_APPLY_MOTION_BLUR = 0x10000000,
|
||||
|
||||
class Options(object):
|
||||
#motion_blur = [chance_int, range] - chance 0..100 to apply to face (not mask), and range [1..3] where 3 is highest power of motion blur
|
||||
|
||||
def __init__(self, random_flip = True, normalize_tanh = False, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], motion_blur=None ):
|
||||
def __init__(self, random_flip = True, normalize_tanh = False, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05] ):
|
||||
self.random_flip = random_flip
|
||||
self.normalize_tanh = normalize_tanh
|
||||
self.rotation_range = rotation_range
|
||||
self.scale_range = scale_range
|
||||
self.tx_range = tx_range
|
||||
self.ty_range = ty_range
|
||||
self.motion_blur = motion_blur
|
||||
if self.motion_blur is not None:
|
||||
chance, range = self.motion_blur
|
||||
chance = np.clip(chance, 0, 100)
|
||||
range = [3,5,7,9][ : np.clip(range, 0, 3)+1 ]
|
||||
self.motion_blur = (chance, range)
|
||||
|
||||
@staticmethod
|
||||
def process (sample, sample_process_options, output_sample_types, debug):
|
||||
SPTF = SampleProcessor.TypeFlags
|
||||
SPTF = SampleProcessor.Types
|
||||
|
||||
sample_bgr = sample.load_bgr()
|
||||
h,w,c = sample_bgr.shape
|
||||
|
@ -73,64 +107,49 @@ class SampleProcessor(object):
|
|||
|
||||
params = imagelib.gen_warp_params(sample_bgr, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range )
|
||||
|
||||
images = [[None]*3 for _ in range(30)]
|
||||
|
||||
cached_images = collections.defaultdict(dict)
|
||||
|
||||
sample_rnd_seed = np.random.randint(0x80000000)
|
||||
|
||||
SPTF_FACETYPE_TO_FACETYPE = { SPTF.FACE_TYPE_HALF : FaceType.HALF,
|
||||
SPTF.FACE_TYPE_FULL : FaceType.FULL,
|
||||
SPTF.FACE_TYPE_HEAD : FaceType.HEAD,
|
||||
SPTF.FACE_TYPE_AVATAR : FaceType.AVATAR }
|
||||
|
||||
outputs = []
|
||||
for sample_type in output_sample_types:
|
||||
f = sample_type[0]
|
||||
size = 0 if len (sample_type) < 2 else sample_type[1]
|
||||
opts = {} if len (sample_type) < 3 else sample_type[2]
|
||||
for opts in output_sample_types:
|
||||
|
||||
resolution = opts.get('resolution', 0)
|
||||
types = opts.get('types', [] )
|
||||
|
||||
random_sub_size = opts.get('random_sub_size', 0)
|
||||
random_sub_res = opts.get('random_sub_res', 0)
|
||||
normalize_std_dev = opts.get('normalize_std_dev', False)
|
||||
normalize_vgg = opts.get('normalize_vgg', False)
|
||||
motion_blur = opts.get('motion_blur', None)
|
||||
|
||||
if f & SPTF.SOURCE != 0:
|
||||
img_type = 0
|
||||
elif f & SPTF.WARPED != 0:
|
||||
img_type = 1
|
||||
elif f & SPTF.WARPED_TRANSFORMED != 0:
|
||||
img_type = 2
|
||||
elif f & SPTF.TRANSFORMED != 0:
|
||||
img_type = 3
|
||||
elif f & SPTF.LANDMARKS_ARRAY != 0:
|
||||
img_type = 4
|
||||
elif f & SPTF.PITCH_YAW_ROLL != 0:
|
||||
img_type = 5
|
||||
else:
|
||||
raise ValueError ('expected SampleTypeFlags type')
|
||||
img_type = SPTF.NONE
|
||||
target_face_type = SPTF.NONE
|
||||
face_mask_type = SPTF.NONE
|
||||
mode_type = SPTF.NONE
|
||||
for t in types:
|
||||
if t >= SPTF.IMG_TYPE_BEGIN and t <= SPTF.IMG_TYPE_END:
|
||||
img_type = t
|
||||
elif t >= SPTF.FACE_TYPE_BEGIN and t <= SPTF.FACE_TYPE_END:
|
||||
target_face_type = t
|
||||
elif t >= SPTF.FACE_MASK_BEGIN and t <= SPTF.FACE_MASK_END:
|
||||
face_mask_type = t
|
||||
elif t >= SPTF.MODE_BEGIN and t <= SPTF.MODE_END:
|
||||
mode_type = t
|
||||
|
||||
if img_type == SPTF.NONE:
|
||||
raise ValueError ('expected IMG_ type')
|
||||
|
||||
if f & SPTF.RANDOM_CLOSE != 0:
|
||||
img_type += 10
|
||||
elif f & SPTF.MORPH_TO_RANDOM_CLOSE != 0:
|
||||
img_type += 20
|
||||
|
||||
face_mask_type = 0
|
||||
if f & SPTF.FACE_MASK_FULL != 0:
|
||||
face_mask_type = 1
|
||||
elif f & SPTF.FACE_MASK_EYES != 0:
|
||||
face_mask_type = 2
|
||||
|
||||
target_face_type = -1
|
||||
if f & SPTF.FACE_TYPE_HALF != 0:
|
||||
target_face_type = FaceType.HALF
|
||||
elif f & SPTF.FACE_TYPE_FULL != 0:
|
||||
target_face_type = FaceType.FULL
|
||||
elif f & SPTF.FACE_TYPE_HEAD != 0:
|
||||
target_face_type = FaceType.HEAD
|
||||
elif f & SPTF.FACE_TYPE_AVATAR != 0:
|
||||
target_face_type = FaceType.AVATAR
|
||||
|
||||
apply_motion_blur = f & SPTF.OPT_APPLY_MOTION_BLUR != 0
|
||||
|
||||
if img_type == 4:
|
||||
if img_type == SPTF.IMG_LANDMARKS_ARRAY:
|
||||
l = sample.landmarks
|
||||
l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
|
||||
l = np.clip(l, 0.0, 1.0)
|
||||
img = l
|
||||
elif img_type == 5:
|
||||
elif img_type == SPTF.IMG_PITCH_YAW_ROLL:
|
||||
pitch_yaw_roll = sample.pitch_yaw_roll
|
||||
if pitch_yaw_roll is not None:
|
||||
pitch, yaw, roll = pitch_yaw_roll
|
||||
|
@ -141,56 +160,26 @@ class SampleProcessor(object):
|
|||
|
||||
img = (pitch, yaw, roll)
|
||||
else:
|
||||
if images[img_type][face_mask_type] is None:
|
||||
if img_type >= 10 and img_type <= 19: #RANDOM_CLOSE
|
||||
img_type -= 10
|
||||
img = close_sample_bgr
|
||||
cur_sample = close_sample
|
||||
|
||||
elif img_type >= 20 and img_type <= 29: #MORPH_TO_RANDOM_CLOSE
|
||||
img_type -= 20
|
||||
res = sample.shape[0]
|
||||
|
||||
s_landmarks = sample.landmarks.copy()
|
||||
d_landmarks = close_sample.landmarks.copy()
|
||||
idxs = list(range(len(s_landmarks)))
|
||||
#remove landmarks near boundaries
|
||||
for i in idxs[:]:
|
||||
s_l = s_landmarks[i]
|
||||
d_l = d_landmarks[i]
|
||||
if s_l[0] < 5 or s_l[1] < 5 or s_l[0] >= res-5 or s_l[1] >= res-5 or \
|
||||
d_l[0] < 5 or d_l[1] < 5 or d_l[0] >= res-5 or d_l[1] >= res-5:
|
||||
idxs.remove(i)
|
||||
#remove landmarks that close to each other in 5 dist
|
||||
for landmarks in [s_landmarks, d_landmarks]:
|
||||
for i in idxs[:]:
|
||||
s_l = landmarks[i]
|
||||
for j in idxs[:]:
|
||||
if i == j:
|
||||
continue
|
||||
s_l_2 = landmarks[j]
|
||||
diff_l = np.abs(s_l - s_l_2)
|
||||
if np.sqrt(diff_l.dot(diff_l)) < 5:
|
||||
idxs.remove(i)
|
||||
break
|
||||
s_landmarks = s_landmarks[idxs]
|
||||
d_landmarks = d_landmarks[idxs]
|
||||
s_landmarks = np.concatenate ( [s_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
|
||||
d_landmarks = np.concatenate ( [d_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
|
||||
img = imagelib.morph_by_points (sample_bgr, s_landmarks, d_landmarks)
|
||||
cur_sample = close_sample
|
||||
else:
|
||||
img = sample_bgr
|
||||
cur_sample = sample
|
||||
if mode_type == SPTF.NONE:
|
||||
raise ValueError ('expected MODE_ type')
|
||||
|
||||
img = cached_images.get(img_type, {}).get(face_mask_type, None)
|
||||
if img is None:
|
||||
|
||||
img = sample_bgr
|
||||
cur_sample = sample
|
||||
|
||||
if is_face_sample:
|
||||
if apply_motion_blur and sample_process_options.motion_blur is not None:
|
||||
chance, mb_range = sample_process_options.motion_blur
|
||||
if np.random.randint(100) < chance :
|
||||
if motion_blur is not None:
|
||||
chance, mb_range = motion_blur
|
||||
chance = np.clip(chance, 0, 100)
|
||||
|
||||
if np.random.randint(100) < chance:
|
||||
mb_range = [3,5,7,9][ : np.clip(mb_range, 0, 3)+1 ]
|
||||
dim = mb_range[ np.random.randint(len(mb_range) ) ]
|
||||
img = imagelib.LinearMotionBlur (img, dim, np.random.randint(180) )
|
||||
|
||||
if face_mask_type == 1:
|
||||
if face_mask_type == SPTF.FACE_MASK_FULL:
|
||||
mask = cur_sample.load_fanseg_mask() #using fanseg_mask if exist
|
||||
|
||||
if mask is None:
|
||||
|
@ -200,26 +189,30 @@ class SampleProcessor(object):
|
|||
cur_sample.ie_polys.overlay_mask(mask)
|
||||
|
||||
img = np.concatenate( (img, mask ), -1 )
|
||||
elif face_mask_type == 2:
|
||||
elif face_mask_type == SPTF.FACE_MASK_EYES:
|
||||
mask = LandmarksProcessor.get_image_eye_mask (img.shape, cur_sample.landmarks)
|
||||
mask = np.expand_dims (cv2.blur (mask, ( w // 32, w // 32 ) ), -1)
|
||||
mask[mask > 0.0] = 1.0
|
||||
img = np.concatenate( (img, mask ), -1 )
|
||||
|
||||
warp = (img_type==SPTF.IMG_WARPED or img_type==SPTF.IMG_WARPED_TRANSFORMED)
|
||||
transform = (img_type==SPTF.IMG_WARPED_TRANSFORMED or img_type==SPTF.IMG_TRANSFORMED)
|
||||
flip = img_type != SPTF.IMG_WARPED
|
||||
is_border_replicate = face_mask_type == SPTF.NONE
|
||||
|
||||
img = cached_images[img_type][face_mask_type] = imagelib.warp_by_params (params, img, warp, transform, flip, is_border_replicate)
|
||||
|
||||
images[img_type][face_mask_type] = imagelib.warp_by_params (params, img, (img_type==1 or img_type==2), (img_type==2 or img_type==3), img_type != 0, face_mask_type == 0)
|
||||
|
||||
img = images[img_type][face_mask_type]
|
||||
|
||||
if is_face_sample and target_face_type != -1:
|
||||
if target_face_type > sample.face_type:
|
||||
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, target_face_type) )
|
||||
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, size, target_face_type), (size,size), flags=cv2.INTER_CUBIC )
|
||||
if is_face_sample and target_face_type != SPTF.NONE:
|
||||
ft = SPTF_FACETYPE_TO_FACETYPE[target_face_type]
|
||||
if ft > sample.face_type:
|
||||
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, ft) )
|
||||
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, resolution, ft), (resolution,resolution), flags=cv2.INTER_CUBIC )
|
||||
else:
|
||||
img = cv2.resize( img, (size,size), cv2.INTER_CUBIC )
|
||||
img = cv2.resize( img, (resolution,resolution), cv2.INTER_CUBIC )
|
||||
|
||||
if random_sub_size != 0:
|
||||
sub_size = size - random_sub_size
|
||||
rnd_state = np.random.RandomState (sample_rnd_seed+random_sub_size)
|
||||
if random_sub_res != 0:
|
||||
sub_size = resolution - random_sub_res
|
||||
rnd_state = np.random.RandomState (sample_rnd_seed+random_sub_res)
|
||||
start_x = rnd_state.randint(sub_size+1)
|
||||
start_y = rnd_state.randint(sub_size+1)
|
||||
img = img[start_y:start_y+sub_size,start_x:start_x+sub_size,:]
|
||||
|
@ -235,22 +228,20 @@ class SampleProcessor(object):
|
|||
img_bgr[:,:,1] -= 116.779
|
||||
img_bgr[:,:,2] -= 123.68
|
||||
|
||||
if f & SPTF.MODE_BGR != 0:
|
||||
if mode_type == SPTF.MODE_BGR:
|
||||
img = img_bgr
|
||||
elif f & SPTF.MODE_BGR_SHUFFLE != 0:
|
||||
elif mode_type == SPTF.MODE_BGR_SHUFFLE:
|
||||
rnd_state = np.random.RandomState (sample_rnd_seed)
|
||||
img_bgr = np.take (img_bgr, rnd_state.permutation(img_bgr.shape[-1]), axis=-1)
|
||||
img = np.concatenate ( (img_bgr,img_mask) , -1 )
|
||||
elif f & SPTF.MODE_G != 0:
|
||||
elif mode_type == SPTF.MODE_G:
|
||||
img = np.concatenate ( (np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1),img_mask) , -1 )
|
||||
elif f & SPTF.MODE_GGG != 0:
|
||||
elif mode_type == SPTF.MODE_GGG:
|
||||
img = np.concatenate ( ( np.repeat ( np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1), (3,), -1), img_mask), -1)
|
||||
elif is_face_sample and f & SPTF.MODE_M != 0:
|
||||
if face_mask_type== 0:
|
||||
elif mode_type == SPTF.MODE_M and is_face_sample:
|
||||
if face_mask_type == SPTF.NONE:
|
||||
raise ValueError ('no face_mask_type defined')
|
||||
img = img_mask
|
||||
else:
|
||||
raise ValueError ('expected SampleTypeFlags mode')
|
||||
|
||||
if not debug:
|
||||
if sample_process_options.normalize_tanh:
|
||||
|
@ -272,3 +263,52 @@ class SampleProcessor(object):
|
|||
return result
|
||||
else:
|
||||
return outputs
|
||||
|
||||
"""
|
||||
|
||||
RANDOM_CLOSE = 0x00000040, #currently unused
|
||||
MORPH_TO_RANDOM_CLOSE = 0x00000080, #currently unused
|
||||
|
||||
if f & SPTF.RANDOM_CLOSE != 0:
|
||||
img_type += 10
|
||||
elif f & SPTF.MORPH_TO_RANDOM_CLOSE != 0:
|
||||
img_type += 20
|
||||
if img_type >= 10 and img_type <= 19: #RANDOM_CLOSE
|
||||
img_type -= 10
|
||||
img = close_sample_bgr
|
||||
cur_sample = close_sample
|
||||
|
||||
elif img_type >= 20 and img_type <= 29: #MORPH_TO_RANDOM_CLOSE
|
||||
img_type -= 20
|
||||
res = sample.shape[0]
|
||||
|
||||
s_landmarks = sample.landmarks.copy()
|
||||
d_landmarks = close_sample.landmarks.copy()
|
||||
idxs = list(range(len(s_landmarks)))
|
||||
#remove landmarks near boundaries
|
||||
for i in idxs[:]:
|
||||
s_l = s_landmarks[i]
|
||||
d_l = d_landmarks[i]
|
||||
if s_l[0] < 5 or s_l[1] < 5 or s_l[0] >= res-5 or s_l[1] >= res-5 or \
|
||||
d_l[0] < 5 or d_l[1] < 5 or d_l[0] >= res-5 or d_l[1] >= res-5:
|
||||
idxs.remove(i)
|
||||
#remove landmarks that close to each other in 5 dist
|
||||
for landmarks in [s_landmarks, d_landmarks]:
|
||||
for i in idxs[:]:
|
||||
s_l = landmarks[i]
|
||||
for j in idxs[:]:
|
||||
if i == j:
|
||||
continue
|
||||
s_l_2 = landmarks[j]
|
||||
diff_l = np.abs(s_l - s_l_2)
|
||||
if np.sqrt(diff_l.dot(diff_l)) < 5:
|
||||
idxs.remove(i)
|
||||
break
|
||||
s_landmarks = s_landmarks[idxs]
|
||||
d_landmarks = d_landmarks[idxs]
|
||||
s_landmarks = np.concatenate ( [s_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
|
||||
d_landmarks = np.concatenate ( [d_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
|
||||
img = imagelib.morph_by_points (sample_bgr, s_landmarks, d_landmarks)
|
||||
cur_sample = close_sample
|
||||
else:
|
||||
"""
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue