mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 05:22:06 -07:00
SAEHD: added option Enable random warp of samples, default is on
Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness for less amount of iterations.
This commit is contained in:
parent
e15f846d08
commit
92f14dee70
4 changed files with 33 additions and 29 deletions
|
@ -631,26 +631,8 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
|
|||
|
||||
reduction_axes = list(range(len(input_shape)))
|
||||
del reduction_axes[self.axis]
|
||||
|
||||
#broadcast_shape = [1] * len(input_shape)
|
||||
#broadcast_shape[self.axis] = input_shape[self.axis]
|
||||
#normed = x# (x - K.reshape(self.moving_mean,broadcast_shape) ) / ( K.sqrt( K.reshape(self.moving_variance,broadcast_shape)) +self.epsilon)
|
||||
#normed *= K.reshape(gamma,[-1]+broadcast_shape[1:] )
|
||||
#normed += K.reshape(beta, [-1]+broadcast_shape[1:] )
|
||||
#mean = K.mean(x, axis=reduction_axes)
|
||||
#self.moving_mean = self.add_weight(shape=(units,), name='moving_mean', initializer='zeros',trainable=False)
|
||||
#self.moving_variance = self.add_weight(shape=(units,), name='moving_variance',initializer='ones', trainable=False)
|
||||
|
||||
#variance = K.var(x, axis=reduction_axes)
|
||||
#sample_size = K.prod([ K.shape(x)[axis] for axis in reduction_axes ])
|
||||
#sample_size = K.cast(sample_size, dtype=K.dtype(x))
|
||||
#variance *= sample_size / (sample_size - (1.0 + self.epsilon))
|
||||
|
||||
#self.add_update([K.moving_average_update(self.moving_mean, mean, self.momentum),
|
||||
# K.moving_average_update(self.moving_variance, variance, self.momentum)], None)
|
||||
#return normed
|
||||
|
||||
del reduction_axes[0]
|
||||
|
||||
broadcast_shape = [1] * len(input_shape)
|
||||
broadcast_shape[self.axis] = input_shape[self.axis]
|
||||
mean = K.mean(x, reduction_axes, keepdims=True)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue