mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-19 13:09:56 -07:00
commit
91315d939f
13 changed files with 635 additions and 149 deletions
4
main.py
4
main.py
|
@ -131,6 +131,8 @@ if __name__ == "__main__":
|
||||||
'start_tensorboard' : arguments.start_tensorboard,
|
'start_tensorboard' : arguments.start_tensorboard,
|
||||||
'dump_ckpt' : arguments.dump_ckpt,
|
'dump_ckpt' : arguments.dump_ckpt,
|
||||||
'flask_preview' : arguments.flask_preview,
|
'flask_preview' : arguments.flask_preview,
|
||||||
|
'config_training_file' : arguments.config_training_file,
|
||||||
|
'auto_gen_config' : arguments.auto_gen_config
|
||||||
}
|
}
|
||||||
from mainscripts import Trainer
|
from mainscripts import Trainer
|
||||||
Trainer.main(**kwargs)
|
Trainer.main(**kwargs)
|
||||||
|
@ -150,6 +152,8 @@ if __name__ == "__main__":
|
||||||
p.add_argument('--silent-start', action="store_true", dest="silent_start", default=False, help="Silent start. Automatically chooses Best GPU and last used model.")
|
p.add_argument('--silent-start', action="store_true", dest="silent_start", default=False, help="Silent start. Automatically chooses Best GPU and last used model.")
|
||||||
p.add_argument('--tensorboard-logdir', action=fixPathAction, dest="tensorboard_dir", help="Directory of the tensorboard output files")
|
p.add_argument('--tensorboard-logdir', action=fixPathAction, dest="tensorboard_dir", help="Directory of the tensorboard output files")
|
||||||
p.add_argument('--start-tensorboard', action="store_true", dest="start_tensorboard", default=False, help="Automatically start the tensorboard server preconfigured to the tensorboard-logdir")
|
p.add_argument('--start-tensorboard', action="store_true", dest="start_tensorboard", default=False, help="Automatically start the tensorboard server preconfigured to the tensorboard-logdir")
|
||||||
|
p.add_argument('--config-training-file', action=fixPathAction, dest="config_training_file", help="Path to custom yaml configuration file")
|
||||||
|
p.add_argument('--auto-gen-config', action="store_true", dest="auto_gen_config", default=False, help="Saves a configuration file for each model used in the trainer. It'll have the same model name")
|
||||||
|
|
||||||
|
|
||||||
p.add_argument('--dump-ckpt', action="store_true", dest="dump_ckpt", default=False, help="Dump the model to ckpt format.")
|
p.add_argument('--dump-ckpt', action="store_true", dest="dump_ckpt", default=False, help="Dump the model to ckpt format.")
|
||||||
|
|
|
@ -71,6 +71,7 @@ def trainerThread (s2c, c2s, e,
|
||||||
debug=False,
|
debug=False,
|
||||||
tensorboard_dir=None,
|
tensorboard_dir=None,
|
||||||
start_tensorboard=False,
|
start_tensorboard=False,
|
||||||
|
config_training_file=None,
|
||||||
dump_ckpt=False,
|
dump_ckpt=False,
|
||||||
**kwargs):
|
**kwargs):
|
||||||
while True:
|
while True:
|
||||||
|
@ -101,6 +102,8 @@ def trainerThread (s2c, c2s, e,
|
||||||
force_gpu_idxs=force_gpu_idxs,
|
force_gpu_idxs=force_gpu_idxs,
|
||||||
cpu_only=cpu_only,
|
cpu_only=cpu_only,
|
||||||
silent_start=silent_start,
|
silent_start=silent_start,
|
||||||
|
config_training_file=config_training_file,
|
||||||
|
auto_gen_config=kwargs.get("auto_gen_config", False),
|
||||||
debug=debug)
|
debug=debug)
|
||||||
|
|
||||||
is_reached_goal = model.is_reached_iter_goal()
|
is_reached_goal = model.is_reached_iter_goal()
|
||||||
|
|
|
@ -1,5 +1,6 @@
|
||||||
import colorsys
|
import colorsys
|
||||||
import inspect
|
import inspect
|
||||||
|
from io import FileIO
|
||||||
import json
|
import json
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
import operator
|
import operator
|
||||||
|
@ -10,6 +11,9 @@ import tempfile
|
||||||
import time
|
import time
|
||||||
import datetime
|
import datetime
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
import yaml
|
||||||
|
from jsonschema import validate, ValidationError
|
||||||
|
import models
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -35,6 +39,8 @@ class ModelBase(object):
|
||||||
cpu_only=False,
|
cpu_only=False,
|
||||||
debug=False,
|
debug=False,
|
||||||
force_model_class_name=None,
|
force_model_class_name=None,
|
||||||
|
config_training_file=None,
|
||||||
|
auto_gen_config=False,
|
||||||
silent_start=False,
|
silent_start=False,
|
||||||
**kwargs):
|
**kwargs):
|
||||||
self.is_training = is_training
|
self.is_training = is_training
|
||||||
|
@ -44,6 +50,8 @@ class ModelBase(object):
|
||||||
self.training_data_dst_path = training_data_dst_path
|
self.training_data_dst_path = training_data_dst_path
|
||||||
self.pretraining_data_path = pretraining_data_path
|
self.pretraining_data_path = pretraining_data_path
|
||||||
self.pretrained_model_path = pretrained_model_path
|
self.pretrained_model_path = pretrained_model_path
|
||||||
|
self.config_training_file = config_training_file
|
||||||
|
self.auto_gen_config = auto_gen_config
|
||||||
self.no_preview = no_preview
|
self.no_preview = no_preview
|
||||||
self.debug = debug
|
self.debug = debug
|
||||||
|
|
||||||
|
@ -141,12 +149,50 @@ class ModelBase(object):
|
||||||
self.choosed_gpu_indexes = None
|
self.choosed_gpu_indexes = None
|
||||||
|
|
||||||
model_data = {}
|
model_data = {}
|
||||||
|
# True if yaml conf file exists
|
||||||
|
self.config_file_exists = False
|
||||||
|
# True if user chooses to read options external or internal conf file
|
||||||
|
self.read_from_conf = False
|
||||||
|
config_error = False
|
||||||
|
#check if config_training_file mode is enabled
|
||||||
|
if config_training_file is not None:
|
||||||
|
self.config_file_path = Path(config_training_file)
|
||||||
|
# Creates folder if folder doesn't exist
|
||||||
|
if not self.config_file_path.exists():
|
||||||
|
os.makedirs(self.config_file_path, exist_ok=True)
|
||||||
|
# Ask if user wants to read options from external or internal conf file only if external conf file exists
|
||||||
|
# or auto_gen_config is true
|
||||||
|
if Path(self.get_strpath_configuration_path()).exists() or self.auto_gen_config:
|
||||||
|
self.read_from_conf = io.input_bool(
|
||||||
|
f'Do you want to read training options from {"external" if self.auto_gen_config else "internal"} file?',
|
||||||
|
True,
|
||||||
|
'Read options from configuration file instead of asking one by one each option'
|
||||||
|
)
|
||||||
|
|
||||||
|
# If user decides to read from external or internal conf file
|
||||||
|
if self.read_from_conf:
|
||||||
|
# Try to read dictionary from external of internal yaml file according
|
||||||
|
# to the value of auto_gen_config
|
||||||
|
self.options = self.read_from_config_file(auto_gen=self.auto_gen_config)
|
||||||
|
# If options dict is empty options will be loaded from dat file
|
||||||
|
if self.options is None:
|
||||||
|
io.log_info(f"Config file validation error, check your config")
|
||||||
|
config_error = True
|
||||||
|
elif not self.options.keys():
|
||||||
|
io.log_info(f"Configuration file doesn't exist. A standard configuration file will be created.")
|
||||||
|
else:
|
||||||
|
self.config_file_exists = True
|
||||||
|
else:
|
||||||
|
io.log_info(f"Configuration file doesn't exist. A standard configuration file will be created.")
|
||||||
|
|
||||||
self.model_data_path = Path( self.get_strpath_storage_for_file('data.dat') )
|
self.model_data_path = Path( self.get_strpath_storage_for_file('data.dat') )
|
||||||
if self.model_data_path.exists():
|
if self.model_data_path.exists():
|
||||||
io.log_info (f"Loading {self.model_name} model...")
|
io.log_info (f"Loading {self.model_name} model...")
|
||||||
model_data = pickle.loads ( self.model_data_path.read_bytes() )
|
model_data = pickle.loads ( self.model_data_path.read_bytes() )
|
||||||
self.iter = model_data.get('iter',0)
|
self.iter = model_data.get('iter',0)
|
||||||
if self.iter != 0:
|
if self.iter != 0:
|
||||||
|
# read options from the .dat file only if the user chooses not to read options from the yaml file
|
||||||
|
if not self.config_file_exists:
|
||||||
self.options = model_data['options']
|
self.options = model_data['options']
|
||||||
self.loss_history = model_data.get('loss_history', [])
|
self.loss_history = model_data.get('loss_history', [])
|
||||||
self.sample_for_preview = model_data.get('sample_for_preview', None)
|
self.sample_for_preview = model_data.get('sample_for_preview', None)
|
||||||
|
@ -183,6 +229,11 @@ class ModelBase(object):
|
||||||
if self.is_first_run():
|
if self.is_first_run():
|
||||||
# save as default options only for first run model initialize
|
# save as default options only for first run model initialize
|
||||||
self.default_options_path.write_bytes( pickle.dumps (self.options) )
|
self.default_options_path.write_bytes( pickle.dumps (self.options) )
|
||||||
|
|
||||||
|
# save config file
|
||||||
|
if self.config_training_file is not None and not self.config_file_exists and not config_error:
|
||||||
|
self.save_config_file(self.auto_gen_config)
|
||||||
|
|
||||||
self.session_name = self.options.get('session_name', "")
|
self.session_name = self.options.get('session_name', "")
|
||||||
self.autobackup_hour = self.options.get('autobackup_hour', 0)
|
self.autobackup_hour = self.options.get('autobackup_hour', 0)
|
||||||
self.maximum_n_backups = self.options.get('maximum_n_backups', 24)
|
self.maximum_n_backups = self.options.get('maximum_n_backups', 24)
|
||||||
|
@ -382,6 +433,10 @@ class ModelBase(object):
|
||||||
#return predictor_func, predictor_input_shape, MergerConfig() for the model
|
#return predictor_func, predictor_input_shape, MergerConfig() for the model
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
#overridable
|
||||||
|
def get_config_schema_path(self):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
def get_pretraining_data_path(self):
|
def get_pretraining_data_path(self):
|
||||||
return self.pretraining_data_path
|
return self.pretraining_data_path
|
||||||
|
|
||||||
|
@ -429,6 +484,60 @@ class ModelBase(object):
|
||||||
self.autobackup_start_time += self.autobackup_hour*3600
|
self.autobackup_start_time += self.autobackup_hour*3600
|
||||||
self.create_backup()
|
self.create_backup()
|
||||||
|
|
||||||
|
def read_from_config_file(self, auto_gen=False):
|
||||||
|
"""
|
||||||
|
Read yaml config file and saves it into a dictionary
|
||||||
|
|
||||||
|
Args:
|
||||||
|
auto_gen (bool, optional): True if you want that a yaml file is readed from model folder. Defaults to False.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
[dict]: Returns the options dictionary if everything is alright otherwise an empty dictionary.
|
||||||
|
"""
|
||||||
|
fun = self.get_strpath_configuration_path if not auto_gen else self.get_model_conf_path
|
||||||
|
|
||||||
|
try:
|
||||||
|
with open(fun(), 'r') as file, open(self.get_config_schema_path(), 'r') as schema:
|
||||||
|
data = yaml.safe_load(file)
|
||||||
|
validate(data, yaml.safe_load(schema))
|
||||||
|
except FileNotFoundError:
|
||||||
|
return {}
|
||||||
|
except ValidationError as ve:
|
||||||
|
io.log_err(f"{ve}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
for key, value in data.items():
|
||||||
|
if isinstance(value, bool):
|
||||||
|
continue
|
||||||
|
if isinstance(value, int):
|
||||||
|
data[key] = np.int32(value)
|
||||||
|
elif isinstance(value, float):
|
||||||
|
data[key] = np.float64(value)
|
||||||
|
|
||||||
|
return data
|
||||||
|
|
||||||
|
def save_config_file(self, auto_gen=False):
|
||||||
|
"""
|
||||||
|
Saves options dictionary in a yaml file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
auto_gen ([bool], optional): True if you want that a yaml file is generated inside model folder for each model. Defaults to None.
|
||||||
|
"""
|
||||||
|
saving_dict = {}
|
||||||
|
for key, value in self.options.items():
|
||||||
|
if isinstance(value, np.int32) or isinstance(value, np.float64):
|
||||||
|
saving_dict[key] = value.item()
|
||||||
|
else:
|
||||||
|
saving_dict[key] = value
|
||||||
|
|
||||||
|
fun = self.get_strpath_configuration_path if not auto_gen else self.get_model_conf_path
|
||||||
|
|
||||||
|
try:
|
||||||
|
with open(fun(), 'w') as file:
|
||||||
|
yaml.dump(saving_dict, file, sort_keys=False)
|
||||||
|
except OSError as exception:
|
||||||
|
io.log_info('Impossible to write YAML configuration file -> ', exception)
|
||||||
|
|
||||||
def create_backup(self):
|
def create_backup(self):
|
||||||
io.log_info ("Creating backup...", end='\r')
|
io.log_info ("Creating backup...", end='\r')
|
||||||
|
|
||||||
|
@ -561,9 +670,15 @@ class ModelBase(object):
|
||||||
def get_strpath_storage_for_file(self, filename):
|
def get_strpath_storage_for_file(self, filename):
|
||||||
return str( self.saved_models_path / ( self.get_model_name() + '_' + filename) )
|
return str( self.saved_models_path / ( self.get_model_name() + '_' + filename) )
|
||||||
|
|
||||||
|
def get_strpath_configuration_path(self):
|
||||||
|
return str(self.config_file_path / 'configuration_file.yaml')
|
||||||
|
|
||||||
def get_summary_path(self):
|
def get_summary_path(self):
|
||||||
return self.get_strpath_storage_for_file('summary.txt')
|
return self.get_strpath_storage_for_file('summary.txt')
|
||||||
|
|
||||||
|
def get_model_conf_path(self):
|
||||||
|
return self.get_strpath_storage_for_file('configuration_file.yaml')
|
||||||
|
|
||||||
def get_summary_text(self):
|
def get_summary_text(self):
|
||||||
visible_options = self.options.copy()
|
visible_options = self.options.copy()
|
||||||
visible_options.update(self.options_show_override)
|
visible_options.update(self.options_show_override)
|
||||||
|
|
|
@ -11,6 +11,8 @@ from models import ModelBase
|
||||||
from samplelib import *
|
from samplelib import *
|
||||||
from core.cv2ex import *
|
from core.cv2ex import *
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
class AMPModel(ModelBase):
|
class AMPModel(ModelBase):
|
||||||
|
|
||||||
#override
|
#override
|
||||||
|
@ -53,8 +55,9 @@ class AMPModel(ModelBase):
|
||||||
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
|
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
|
||||||
default_use_fp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
default_use_fp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||||
|
|
||||||
ask_override = self.ask_override()
|
ask_override = False if self.read_from_conf else self.ask_override()
|
||||||
if self.is_first_run() or ask_override:
|
if self.is_first_run() or ask_override:
|
||||||
|
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||||
self.ask_autobackup_hour()
|
self.ask_autobackup_hour()
|
||||||
self.ask_write_preview_history()
|
self.ask_write_preview_history()
|
||||||
self.ask_target_iter()
|
self.ask_target_iter()
|
||||||
|
@ -66,6 +69,7 @@ class AMPModel(ModelBase):
|
||||||
|
|
||||||
|
|
||||||
if self.is_first_run():
|
if self.is_first_run():
|
||||||
|
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||||
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 32 .")
|
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 32 .")
|
||||||
resolution = np.clip ( (resolution // 32) * 32, 64, 640)
|
resolution = np.clip ( (resolution // 32) * 32, 64, 640)
|
||||||
self.options['resolution'] = resolution
|
self.options['resolution'] = resolution
|
||||||
|
@ -79,6 +83,7 @@ class AMPModel(ModelBase):
|
||||||
default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims)
|
default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims)
|
||||||
|
|
||||||
if self.is_first_run():
|
if self.is_first_run():
|
||||||
|
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||||
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
|
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
|
||||||
self.options['inter_dims'] = np.clip ( io.input_int("Inter dimensions", default_inter_dims, add_info="32-2048", help_message="Should be equal or more than AutoEncoder dimensions. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 2048 )
|
self.options['inter_dims'] = np.clip ( io.input_int("Inter dimensions", default_inter_dims, add_info="32-2048", help_message="Should be equal or more than AutoEncoder dimensions. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 2048 )
|
||||||
|
|
||||||
|
@ -95,6 +100,7 @@ class AMPModel(ModelBase):
|
||||||
self.options['morph_factor'] = morph_factor
|
self.options['morph_factor'] = morph_factor
|
||||||
|
|
||||||
if self.is_first_run() or ask_override:
|
if self.is_first_run() or ask_override:
|
||||||
|
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||||
self.options['eyes_mouth_prio'] = io.input_bool ("Eyes and mouth priority", default_eyes_mouth_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction. Also makes the detail of the teeth higher.')
|
self.options['eyes_mouth_prio'] = io.input_bool ("Eyes and mouth priority", default_eyes_mouth_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction. Also makes the detail of the teeth higher.')
|
||||||
self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
|
self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
|
||||||
|
|
||||||
|
@ -107,6 +113,7 @@ class AMPModel(ModelBase):
|
||||||
default_gan_dims = self.options['gan_dims'] = self.load_or_def_option('gan_dims', 16)
|
default_gan_dims = self.options['gan_dims'] = self.load_or_def_option('gan_dims', 16)
|
||||||
|
|
||||||
if self.is_first_run() or ask_override:
|
if self.is_first_run() or ask_override:
|
||||||
|
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||||
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
|
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
|
||||||
|
|
||||||
self.options['adabelief'] = io.input_bool ("Use AdaBelief optimizer?", default_adabelief, help_message="Use AdaBelief optimizer. It requires more VRAM, but the accuracy and the generalization of the model is higher.")
|
self.options['adabelief'] = io.input_bool ("Use AdaBelief optimizer?", default_adabelief, help_message="Use AdaBelief optimizer. It requires more VRAM, but the accuracy and the generalization of the model is higher.")
|
||||||
|
@ -807,4 +814,10 @@ class AMPModel(ModelBase):
|
||||||
import merger
|
import merger
|
||||||
return predictor_morph, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=self.face_type, default_mode = 'overlay')
|
return predictor_morph, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=self.face_type, default_mode = 'overlay')
|
||||||
|
|
||||||
|
#override
|
||||||
|
def get_config_schema_path(self):
|
||||||
|
config_path = Path(__file__).parent.absolute() / Path("config_schema.json")
|
||||||
|
return config_path
|
||||||
|
|
||||||
|
|
||||||
Model = AMPModel
|
Model = AMPModel
|
||||||
|
|
256
models/Model_AMP/config_schema.json
Normal file
256
models/Model_AMP/config_schema.json
Normal file
|
@ -0,0 +1,256 @@
|
||||||
|
{
|
||||||
|
"$schema": "http://json-schema.org/draft-07/schema#",
|
||||||
|
"$ref": "#/definitions/dfl_config",
|
||||||
|
"definitions": {
|
||||||
|
"dfl_config": {
|
||||||
|
"type": "object",
|
||||||
|
"additionalProperties": false,
|
||||||
|
"properties": {
|
||||||
|
"use_fp16": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"morph_factor": {
|
||||||
|
"type": "number",
|
||||||
|
"minimum":0.0,
|
||||||
|
"maximum":0.5
|
||||||
|
},
|
||||||
|
"resolution": {
|
||||||
|
"type": "integer",
|
||||||
|
"minimum": 64,
|
||||||
|
"maximum": 640,
|
||||||
|
"multipleOf": 16
|
||||||
|
},
|
||||||
|
"face_type": {
|
||||||
|
"type": "string",
|
||||||
|
"enum": [
|
||||||
|
"h",
|
||||||
|
"mf",
|
||||||
|
"f",
|
||||||
|
"wf",
|
||||||
|
"head",
|
||||||
|
"custom"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"models_opt_on_gpu": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"ae_dims": {
|
||||||
|
"type": "integer",
|
||||||
|
"minimum": 32,
|
||||||
|
"maximum": 1024
|
||||||
|
},
|
||||||
|
"e_dims": {
|
||||||
|
"type": "integer",
|
||||||
|
"minimum": 16,
|
||||||
|
"maximum": 256,
|
||||||
|
"multipleOf": 2
|
||||||
|
},
|
||||||
|
"inter_dims": {
|
||||||
|
"type": "integer",
|
||||||
|
"minimum": 32,
|
||||||
|
"maximum": 2048,
|
||||||
|
"multipleOf": 2
|
||||||
|
},
|
||||||
|
"d_dims": {
|
||||||
|
"type": "integer",
|
||||||
|
"minimum": 16,
|
||||||
|
"maximum": 256,
|
||||||
|
"multipleOf": 2
|
||||||
|
},
|
||||||
|
"d_mask_dims": {
|
||||||
|
"type": "integer",
|
||||||
|
"minimum": 16,
|
||||||
|
"maximum": 256,
|
||||||
|
"multipleOf": 2
|
||||||
|
},
|
||||||
|
"masked_training": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"eyes_prio": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"mouth_prio": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"uniform_yaw": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"blur_out_mask": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"adabelief": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"lr_dropout": {
|
||||||
|
"type": "string",
|
||||||
|
"enum": [
|
||||||
|
"y",
|
||||||
|
"n",
|
||||||
|
"cpu"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"loss_function": {
|
||||||
|
"type": "string",
|
||||||
|
"enum": [
|
||||||
|
"SSIM",
|
||||||
|
"MS-SSIM",
|
||||||
|
"MS-SSIM+L1"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"random_warp": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"random_hsv_power": {
|
||||||
|
"type": "number",
|
||||||
|
"minimum": 0.0,
|
||||||
|
"maximum": 0.3
|
||||||
|
},
|
||||||
|
"random_downsample": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"random_noise": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"random_blur": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"random_jpeg": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"background_power": {
|
||||||
|
"type": "number",
|
||||||
|
"minimum": 0.0,
|
||||||
|
"maximum": 1.0
|
||||||
|
},
|
||||||
|
"ct_mode": {
|
||||||
|
"type": "string",
|
||||||
|
"enum": [
|
||||||
|
"none",
|
||||||
|
"rct",
|
||||||
|
"lct",
|
||||||
|
"mkl",
|
||||||
|
"idt",
|
||||||
|
"sot"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"random_color": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"clipgrad": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"pretrain": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"session_name": {
|
||||||
|
"type": "string"
|
||||||
|
},
|
||||||
|
"autobackup_hour": {
|
||||||
|
"type": "integer",
|
||||||
|
"minimum": 0,
|
||||||
|
"maximum": 24
|
||||||
|
},
|
||||||
|
"maximum_n_backups": {
|
||||||
|
"type": "integer"
|
||||||
|
},
|
||||||
|
"write_preview_history": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"target_iter": {
|
||||||
|
"type": "integer",
|
||||||
|
"minimum": 0
|
||||||
|
},
|
||||||
|
"retraining_samples": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"random_src_flip": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"random_dst_flip": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"batch_size": {
|
||||||
|
"type": "integer",
|
||||||
|
"minimum": 1
|
||||||
|
},
|
||||||
|
"gan_power": {
|
||||||
|
"type": "number",
|
||||||
|
"minimum": 0.0,
|
||||||
|
"maximum": 5.0
|
||||||
|
},
|
||||||
|
"gan_version": {
|
||||||
|
"type": "integer",
|
||||||
|
"minimum": 2,
|
||||||
|
"maximum": 3
|
||||||
|
},
|
||||||
|
"gan_patch_size": {
|
||||||
|
"type": "integer",
|
||||||
|
"minimum": 3,
|
||||||
|
"maximum": 640
|
||||||
|
},
|
||||||
|
"gan_dims": {
|
||||||
|
"type": "integer",
|
||||||
|
"minimum": 4,
|
||||||
|
"maximum": 512
|
||||||
|
},
|
||||||
|
"gan_smoothing": {
|
||||||
|
"type": "number",
|
||||||
|
"minimum": 0.0,
|
||||||
|
"maximum": 0.5
|
||||||
|
},
|
||||||
|
"gan_noise": {
|
||||||
|
"type": "number",
|
||||||
|
"minimum": 0.0,
|
||||||
|
"maximum": 0.5
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"required": [
|
||||||
|
"adabelief",
|
||||||
|
"ae_dims",
|
||||||
|
"autobackup_hour",
|
||||||
|
"background_power",
|
||||||
|
"batch_size",
|
||||||
|
"blur_out_mask",
|
||||||
|
"clipgrad",
|
||||||
|
"ct_mode",
|
||||||
|
"d_dims",
|
||||||
|
"d_mask_dims",
|
||||||
|
"e_dims",
|
||||||
|
"inter_dims",
|
||||||
|
"morph_factor",
|
||||||
|
"eyes_prio",
|
||||||
|
"face_type",
|
||||||
|
"gan_dims",
|
||||||
|
"gan_noise",
|
||||||
|
"gan_patch_size",
|
||||||
|
"gan_power",
|
||||||
|
"gan_smoothing",
|
||||||
|
"gan_version",
|
||||||
|
"loss_function",
|
||||||
|
"lr_dropout",
|
||||||
|
"masked_training",
|
||||||
|
"maximum_n_backups",
|
||||||
|
"models_opt_on_gpu",
|
||||||
|
"mouth_prio",
|
||||||
|
"pretrain",
|
||||||
|
"random_blur",
|
||||||
|
"random_color",
|
||||||
|
"random_downsample",
|
||||||
|
"random_dst_flip",
|
||||||
|
"random_hsv_power",
|
||||||
|
"random_jpeg",
|
||||||
|
"random_noise",
|
||||||
|
"random_src_flip",
|
||||||
|
"random_warp",
|
||||||
|
"resolution",
|
||||||
|
"retraining_samples",
|
||||||
|
"session_name",
|
||||||
|
"target_iter",
|
||||||
|
"uniform_yaw",
|
||||||
|
"use_fp16",
|
||||||
|
"write_preview_history"
|
||||||
|
],
|
||||||
|
"title": "dfl_config"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -10,7 +10,16 @@ from facelib import FaceType
|
||||||
from models import ModelBase
|
from models import ModelBase
|
||||||
from samplelib import *
|
from samplelib import *
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
class QModel(ModelBase):
|
class QModel(ModelBase):
|
||||||
|
#override
|
||||||
|
def on_initialize_options(self):
|
||||||
|
ask_override = False if self.read_from_conf else self.ask_override()
|
||||||
|
if self.is_first_run() or ask_override:
|
||||||
|
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||||
|
self.ask_batch_size()
|
||||||
|
|
||||||
#override
|
#override
|
||||||
def on_initialize(self):
|
def on_initialize(self):
|
||||||
device_config = nn.getCurrentDeviceConfig()
|
device_config = nn.getCurrentDeviceConfig()
|
||||||
|
@ -80,7 +89,7 @@ class QModel(ModelBase):
|
||||||
if self.is_training:
|
if self.is_training:
|
||||||
# Adjust batch size for multiple GPU
|
# Adjust batch size for multiple GPU
|
||||||
gpu_count = max(1, len(devices) )
|
gpu_count = max(1, len(devices) )
|
||||||
bs_per_gpu = max(1, 4 // gpu_count)
|
bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
|
||||||
self.set_batch_size( gpu_count*bs_per_gpu)
|
self.set_batch_size( gpu_count*bs_per_gpu)
|
||||||
|
|
||||||
# Compute losses per GPU
|
# Compute losses per GPU
|
||||||
|
@ -317,5 +326,9 @@ class QModel(ModelBase):
|
||||||
return self.predictor_func, (self.resolution, self.resolution, 3), merger.MergerConfigMasked(face_type=self.face_type,
|
return self.predictor_func, (self.resolution, self.resolution, 3), merger.MergerConfigMasked(face_type=self.face_type,
|
||||||
default_mode = 'overlay',
|
default_mode = 'overlay',
|
||||||
)
|
)
|
||||||
|
#override
|
||||||
|
def get_config_schema_path(self):
|
||||||
|
config_path = Path(__file__).parent.absolute() / Path("config_schema.json")
|
||||||
|
return config_path
|
||||||
|
|
||||||
Model = QModel
|
Model = QModel
|
||||||
|
|
20
models/Model_Quick96/config_schema.json
Normal file
20
models/Model_Quick96/config_schema.json
Normal file
|
@ -0,0 +1,20 @@
|
||||||
|
{
|
||||||
|
"$schema": "http://json-schema.org/draft-07/schema#",
|
||||||
|
"$ref": "#/definitions/dfl_config",
|
||||||
|
"definitions": {
|
||||||
|
"dfl_config": {
|
||||||
|
"type": "object",
|
||||||
|
"additionalProperties": false,
|
||||||
|
"properties": {
|
||||||
|
"batch_size": {
|
||||||
|
"type": "integer",
|
||||||
|
"minimum": 1
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"required": [
|
||||||
|
"batch_size",
|
||||||
|
],
|
||||||
|
"title": "dfl_config"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -10,6 +10,8 @@ from facelib import FaceType
|
||||||
from models import ModelBase
|
from models import ModelBase
|
||||||
from samplelib import *
|
from samplelib import *
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
class SAEHDModel(ModelBase):
|
class SAEHDModel(ModelBase):
|
||||||
|
|
||||||
#override
|
#override
|
||||||
|
@ -28,7 +30,7 @@ class SAEHDModel(ModelBase):
|
||||||
min_res = 64
|
min_res = 64
|
||||||
max_res = 640
|
max_res = 640
|
||||||
|
|
||||||
#default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||||
default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 128)
|
default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 128)
|
||||||
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'f')
|
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'f')
|
||||||
default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True)
|
default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True)
|
||||||
|
@ -68,10 +70,11 @@ class SAEHDModel(ModelBase):
|
||||||
default_random_color = self.options['random_color'] = self.load_or_def_option('random_color', False)
|
default_random_color = self.options['random_color'] = self.load_or_def_option('random_color', False)
|
||||||
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
|
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
|
||||||
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
|
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
|
||||||
default_use_fp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
#default_use_fp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||||
|
|
||||||
ask_override = self.ask_override()
|
ask_override = False if self.read_from_conf else self.ask_override()
|
||||||
if self.is_first_run() or ask_override:
|
if self.is_first_run() or ask_override:
|
||||||
|
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||||
self.ask_session_name()
|
self.ask_session_name()
|
||||||
self.ask_autobackup_hour()
|
self.ask_autobackup_hour()
|
||||||
self.ask_maximum_n_backups()
|
self.ask_maximum_n_backups()
|
||||||
|
@ -81,9 +84,10 @@ class SAEHDModel(ModelBase):
|
||||||
self.ask_random_src_flip()
|
self.ask_random_src_flip()
|
||||||
self.ask_random_dst_flip()
|
self.ask_random_dst_flip()
|
||||||
self.ask_batch_size(suggest_batch_size)
|
self.ask_batch_size(suggest_batch_size)
|
||||||
#self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.')
|
self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.')
|
||||||
|
|
||||||
if self.is_first_run():
|
if self.is_first_run():
|
||||||
|
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||||
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16 and 32 for -d archi.")
|
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16 and 32 for -d archi.")
|
||||||
resolution = np.clip ( (resolution // 16) * 16, min_res, max_res)
|
resolution = np.clip ( (resolution // 16) * 16, min_res, max_res)
|
||||||
self.options['resolution'] = resolution
|
self.options['resolution'] = resolution
|
||||||
|
@ -91,13 +95,13 @@ class SAEHDModel(ModelBase):
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
archi = io.input_str ("AE architecture", default_archi, help_message=\
|
archi = io.input_str ("AE architecture", default_archi, help_message=\
|
||||||
"""
|
"""
|
||||||
'df' keeps more identity-preserved face.
|
'df' keeps more identity-preserved face.
|
||||||
'liae' can fix overly different face shapes.
|
'liae' can fix overly different face shapes.
|
||||||
'-u' increased likeness of the face.
|
'-u' increased likeness of the face.
|
||||||
'-d' (experimental) doubling the resolution using the same computation cost.
|
'-d' (experimental) doubling the resolution using the same computation cost.
|
||||||
Examples: df, liae, df-d, df-ud, liae-ud, ...
|
Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
""").lower()
|
""").lower()
|
||||||
|
|
||||||
archi_split = archi.split('-')
|
archi_split = archi.split('-')
|
||||||
|
|
||||||
|
@ -130,6 +134,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims)
|
default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims)
|
||||||
|
|
||||||
if self.is_first_run():
|
if self.is_first_run():
|
||||||
|
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||||
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
|
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
|
||||||
|
|
||||||
e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
|
e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
|
||||||
|
@ -142,6 +147,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2
|
self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2
|
||||||
|
|
||||||
if self.is_first_run() or ask_override:
|
if self.is_first_run() or ask_override:
|
||||||
|
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||||
if self.options['face_type'] == 'wf' or self.options['face_type'] == 'head' or self.options['face_type'] == 'custom':
|
if self.options['face_type'] == 'wf' or self.options['face_type'] == 'head' or self.options['face_type'] == 'custom':
|
||||||
self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' or 'head' type. Masked training clips training area to full_face mask or XSeg mask, thus network will train the faces properly.")
|
self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' or 'head' type. Masked training clips training area to full_face mask or XSeg mask, thus network will train the faces properly.")
|
||||||
|
|
||||||
|
@ -159,6 +165,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
default_gan_noise = self.options['gan_noise'] = self.load_or_def_option('gan_noise', 0.0)
|
default_gan_noise = self.options['gan_noise'] = self.load_or_def_option('gan_noise', 0.0)
|
||||||
|
|
||||||
if self.is_first_run() or ask_override:
|
if self.is_first_run() or ask_override:
|
||||||
|
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||||
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
|
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
|
||||||
|
|
||||||
self.options['adabelief'] = io.input_bool ("Use AdaBelief optimizer?", default_adabelief, help_message="Use AdaBelief optimizer. It requires more VRAM, but the accuracy and the generalization of the model is higher.")
|
self.options['adabelief'] = io.input_bool ("Use AdaBelief optimizer?", default_adabelief, help_message="Use AdaBelief optimizer. It requires more VRAM, but the accuracy and the generalization of the model is higher.")
|
||||||
|
@ -1053,4 +1060,9 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
import merger
|
import merger
|
||||||
return self.predictor_func, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=self.face_type, default_mode = 'overlay')
|
return self.predictor_func, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=self.face_type, default_mode = 'overlay')
|
||||||
|
|
||||||
|
#override
|
||||||
|
def get_config_schema_path(self):
|
||||||
|
config_path = Path(__file__).parent.absolute() / Path("config_schema.json")
|
||||||
|
return config_path
|
||||||
|
|
||||||
Model = SAEHDModel
|
Model = SAEHDModel
|
||||||
|
|
|
@ -11,6 +11,8 @@ from facelib import FaceType, XSegNet
|
||||||
from models import ModelBase
|
from models import ModelBase
|
||||||
from samplelib import *
|
from samplelib import *
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
class XSegModel(ModelBase):
|
class XSegModel(ModelBase):
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
|
@ -18,7 +20,7 @@ class XSegModel(ModelBase):
|
||||||
|
|
||||||
#override
|
#override
|
||||||
def on_initialize_options(self):
|
def on_initialize_options(self):
|
||||||
ask_override = self.ask_override()
|
ask_override = False if self.read_from_conf else self.ask_override()
|
||||||
|
|
||||||
if not self.is_first_run() and ask_override:
|
if not self.is_first_run() and ask_override:
|
||||||
if io.input_bool(f"Restart training?", False, help_message="Reset model weights and start training from scratch."):
|
if io.input_bool(f"Restart training?", False, help_message="Reset model weights and start training from scratch."):
|
||||||
|
@ -28,9 +30,11 @@ class XSegModel(ModelBase):
|
||||||
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
|
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
|
||||||
|
|
||||||
if self.is_first_run():
|
if self.is_first_run():
|
||||||
|
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower()
|
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower()
|
||||||
|
|
||||||
if self.is_first_run() or ask_override:
|
if self.is_first_run() or ask_override:
|
||||||
|
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||||
self.ask_batch_size(4, range=[2,16])
|
self.ask_batch_size(4, range=[2,16])
|
||||||
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain)
|
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain)
|
||||||
|
|
||||||
|
@ -51,14 +55,12 @@ class XSegModel(ModelBase):
|
||||||
|
|
||||||
self.resolution = resolution = 256
|
self.resolution = resolution = 256
|
||||||
|
|
||||||
|
|
||||||
self.face_type = {'h' : FaceType.HALF,
|
self.face_type = {'h' : FaceType.HALF,
|
||||||
'mf' : FaceType.MID_FULL,
|
'mf' : FaceType.MID_FULL,
|
||||||
'f' : FaceType.FULL,
|
'f' : FaceType.FULL,
|
||||||
'wf' : FaceType.WHOLE_FACE,
|
'wf' : FaceType.WHOLE_FACE,
|
||||||
'head' : FaceType.HEAD}[ self.options['face_type'] ]
|
'head' : FaceType.HEAD}[ self.options['face_type'] ]
|
||||||
|
|
||||||
|
|
||||||
place_model_on_cpu = len(devices) == 0
|
place_model_on_cpu = len(devices) == 0
|
||||||
models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name
|
models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name
|
||||||
|
|
||||||
|
@ -280,4 +282,9 @@ class XSegModel(ModelBase):
|
||||||
opset=13,
|
opset=13,
|
||||||
output_path=output_path)
|
output_path=output_path)
|
||||||
|
|
||||||
|
#override
|
||||||
|
def get_config_schema_path(self):
|
||||||
|
config_path = Path(__file__).parent.absolute() / Path("config_schema.json")
|
||||||
|
return config_path
|
||||||
|
|
||||||
Model = XSegModel
|
Model = XSegModel
|
39
models/Model_XSeg/config_schema.json
Normal file
39
models/Model_XSeg/config_schema.json
Normal file
|
@ -0,0 +1,39 @@
|
||||||
|
{
|
||||||
|
"$schema": "http://json-schema.org/draft-07/schema#",
|
||||||
|
"$ref": "#/definitions/dfl_config",
|
||||||
|
"definitions": {
|
||||||
|
"dfl_config": {
|
||||||
|
"type": "object",
|
||||||
|
"additionalProperties": false,
|
||||||
|
"properties": {
|
||||||
|
"use_fp16": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"face_type": {
|
||||||
|
"type": "string",
|
||||||
|
"enum": [
|
||||||
|
"h",
|
||||||
|
"mf",
|
||||||
|
"f",
|
||||||
|
"wf",
|
||||||
|
"head",
|
||||||
|
"custom"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"pretrain": {
|
||||||
|
"type": "boolean"
|
||||||
|
},
|
||||||
|
"batch_size": {
|
||||||
|
"type": "integer",
|
||||||
|
"minimum": 1
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"required": [
|
||||||
|
"batch_size",
|
||||||
|
"face_type",
|
||||||
|
"pretrain",
|
||||||
|
],
|
||||||
|
"title": "dfl_config"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -3,3 +3,5 @@ from .ModelBase import ModelBase
|
||||||
def import_model(model_class_name):
|
def import_model(model_class_name):
|
||||||
module = __import__('Model_'+model_class_name, globals(), locals(), [], 1)
|
module = __import__('Model_'+model_class_name, globals(), locals(), [], 1)
|
||||||
return getattr(module, 'Model')
|
return getattr(module, 'Model')
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -11,3 +11,4 @@ tensorflow-gpu==2.4.0
|
||||||
tf2onnx==1.9.3
|
tf2onnx==1.9.3
|
||||||
tensorboardX
|
tensorboardX
|
||||||
crc32c
|
crc32c
|
||||||
|
jsonschema
|
||||||
|
|
|
@ -14,3 +14,4 @@ Flask==1.1.1
|
||||||
flask-socketio==4.2.1
|
flask-socketio==4.2.1
|
||||||
tensorboardX
|
tensorboardX
|
||||||
crc32c
|
crc32c
|
||||||
|
jsonschema
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue