Merge pull request #150 from faceshiftlabs/feat/image-degradation

Feat/image degradation
This commit is contained in:
Jeremy Hummel 2021-06-15 15:55:45 -07:00 committed by GitHub
commit 8b438ed1e4
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 114 additions and 3 deletions

View file

@ -4,6 +4,15 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [1.7.2] - 2021-06-15
### Added
- New sample degradation options (only affects input, similar to random warp):
- Random noise (gaussian/laplace/poisson)
- Random blur (gaussian/motion)
- Random jpeg compression
- Random downsampling
- New "warped" preview(s): Shows the input samples with any/all distortions.
## [1.7.1] - 2021-06-15 ## [1.7.1] - 2021-06-15
### Added ### Added
- New autobackup options: - New autobackup options:

View file

@ -56,6 +56,11 @@ class SAEHDModel(ModelBase):
default_loss_function = self.options['loss_function'] = self.load_or_def_option('loss_function', 'SSIM') default_loss_function = self.options['loss_function'] = self.load_or_def_option('loss_function', 'SSIM')
default_random_warp = self.options['random_warp'] = self.load_or_def_option('random_warp', True) default_random_warp = self.options['random_warp'] = self.load_or_def_option('random_warp', True)
default_random_downsample = self.options['random_downsample'] = self.load_or_def_option('random_downsample', False)
default_random_noise = self.options['random_noise'] = self.load_or_def_option('random_noise', False)
default_random_blur = self.options['random_blur'] = self.load_or_def_option('random_blur', False)
default_random_jpeg = self.options['random_jpeg'] = self.load_or_def_option('random_jpeg', False)
default_background_power = self.options['background_power'] = self.load_or_def_option('background_power', 0.0) default_background_power = self.options['background_power'] = self.load_or_def_option('background_power', 0.0)
default_true_face_power = self.options['true_face_power'] = self.load_or_def_option('true_face_power', 0.0) default_true_face_power = self.options['true_face_power'] = self.load_or_def_option('true_face_power', 0.0)
default_face_style_power = self.options['face_style_power'] = self.load_or_def_option('face_style_power', 0.0) default_face_style_power = self.options['face_style_power'] = self.load_or_def_option('face_style_power', 0.0)
@ -162,6 +167,11 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.") self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.")
self.options['random_downsample'] = io.input_bool("Enable random downsample of samples", default_random_downsample, help_message="")
self.options['random_noise'] = io.input_bool("Enable random noise added to samples", default_random_noise, help_message="")
self.options['random_blur'] = io.input_bool("Enable random blur of samples", default_random_blur, help_message="")
self.options['random_jpeg'] = io.input_bool("Enable random jpeg compression of samples", default_random_jpeg, help_message="")
self.options['gan_version'] = np.clip (io.input_int("GAN version", default_gan_version, add_info="2 or 3", help_message="Choose GAN version (v2: 7/16/2020, v3: 1/3/2021):"), 2, 3) self.options['gan_version'] = np.clip (io.input_int("GAN version", default_gan_version, add_info="2 or 3", help_message="Choose GAN version (v2: 7/16/2020, v3: 1/3/2021):"), 2, 3)
if self.options['gan_version'] == 2: if self.options['gan_version'] == 2:
@ -755,7 +765,13 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
self.set_training_data_generators ([ self.set_training_data_generators ([
SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(), SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=random_src_flip), sample_process_options=SampleProcessor.Options(random_flip=random_src_flip),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp,
'random_downsample': self.options['random_downsample'],
'random_noise': self.options['random_noise'],
'random_blur': self.options['random_blur'],
'random_jpeg': self.options['random_jpeg'],
'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode,
'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
@ -765,7 +781,13 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(), SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=random_dst_flip), sample_process_options=SampleProcessor.Options(random_flip=random_dst_flip),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp,
'random_downsample': self.options['random_downsample'],
'random_noise': self.options['random_noise'],
'random_blur': self.options['random_blur'],
'random_jpeg': self.options['random_jpeg'],
'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug,
'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
@ -877,6 +899,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples (warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
S, D, SS, SSM, DD, DDM, SD, SDM = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([target_src,target_dst] + self.AE_view (target_src, target_dst) ) ] S, D, SS, SSM, DD, DDM, SD, SDM = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([target_src,target_dst] + self.AE_view (target_src, target_dst) ) ]
SW, DW = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([warped_src,warped_dst]) ]
SSM, DDM, SDM, = [ np.repeat (x, (3,), -1) for x in [SSM, DDM, SDM] ] SSM, DDM, SDM, = [ np.repeat (x, (3,), -1) for x in [SSM, DDM, SDM] ]
target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )] target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )]
@ -892,6 +915,11 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
st.append ( np.concatenate ( ar, axis=1) ) st.append ( np.concatenate ( ar, axis=1) )
result += [ ('SAEHD', np.concatenate (st, axis=0 )), ] result += [ ('SAEHD', np.concatenate (st, axis=0 )), ]
wt = []
for i in range(n_samples):
ar = SW[i], SS[i], DW[i], DD[i], SD[i]
wt.append ( np.concatenate ( ar, axis=1) )
result += [ ('SAEHD warped', np.concatenate (wt, axis=0 )), ]
st_m = [] st_m = []
for i in range(n_samples): for i in range(n_samples):
@ -922,6 +950,23 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
st.append ( np.concatenate ( ar, axis=1) ) st.append ( np.concatenate ( ar, axis=1) )
result += [ ('SAEHD pred', np.concatenate (st, axis=0 )), ] result += [ ('SAEHD pred', np.concatenate (st, axis=0 )), ]
wt = []
for i in range(n_samples):
ar = SW[i], SS[i]
wt.append ( np.concatenate ( ar, axis=1) )
result += [ ('SAEHD warped src-src', np.concatenate (wt, axis=0 )), ]
wt = []
for i in range(n_samples):
ar = DW[i], DD[i]
wt.append ( np.concatenate ( ar, axis=1) )
result += [ ('SAEHD warped dst-dst', np.concatenate (wt, axis=0 )), ]
wt = []
for i in range(n_samples):
ar = DW[i], SD[i]
wt.append ( np.concatenate ( ar, axis=1) )
result += [ ('SAEHD warped pred', np.concatenate (wt, axis=0 )), ]
st_m = [] st_m = []
for i in range(n_samples): for i in range(n_samples):

View file

@ -7,7 +7,7 @@ import numpy as np
from core import imagelib from core import imagelib
from core.cv2ex import * from core.cv2ex import *
from core.imagelib import sd from core.imagelib import sd, LinearMotionBlur
from core.imagelib.color_transfer import random_lab_rotation from core.imagelib.color_transfer import random_lab_rotation
from facelib import FaceType, LandmarksProcessor from facelib import FaceType, LandmarksProcessor
@ -112,6 +112,10 @@ class SampleProcessor(object):
nearest_resize_to = opts.get('nearest_resize_to', None) nearest_resize_to = opts.get('nearest_resize_to', None)
warp = opts.get('warp', False) warp = opts.get('warp', False)
transform = opts.get('transform', False) transform = opts.get('transform', False)
random_downsample = opts.get('random_downsample', False)
random_noise = opts.get('random_noise', False)
random_blur = opts.get('random_blur', False)
random_jpeg = opts.get('random_jpeg', False)
motion_blur = opts.get('motion_blur', None) motion_blur = opts.get('motion_blur', None)
gaussian_blur = opts.get('gaussian_blur', None) gaussian_blur = opts.get('gaussian_blur', None)
random_bilinear_resize = opts.get('random_bilinear_resize', None) random_bilinear_resize = opts.get('random_bilinear_resize', None)
@ -214,6 +218,59 @@ class SampleProcessor(object):
img = imagelib.color_transfer (ct_mode, img, cv2.resize( ct_sample_bgr, (resolution,resolution), interpolation=cv2.INTER_LINEAR ) ) img = imagelib.color_transfer (ct_mode, img, cv2.resize( ct_sample_bgr, (resolution,resolution), interpolation=cv2.INTER_LINEAR ) )
randomization_order = ['blur', 'noise', 'jpeg', 'down']
np.random.shuffle(randomization_order)
for random_distortion in randomization_order:
# Apply random blur
if random_distortion == 'blur' and random_blur:
blur_type = np.random.choice(['motion', 'gaussian'])
if blur_type == 'motion':
blur_k = np.random.randint(10, 20)
blur_angle = 360 * np.random.random()
img = LinearMotionBlur(img, blur_k, blur_angle)
elif blur_type == 'gaussian':
blur_sigma = 5 * np.random.random() + 3
if blur_sigma < 5.0:
kernel_size = 2.9 * blur_sigma # 97% of weight
else:
kernel_size = 2.6 * blur_sigma # 95% of weight
kernel_size = int(kernel_size)
kernel_size = kernel_size + 1 if kernel_size % 2 == 0 else kernel_size
img = cv2.GaussianBlur(img, (kernel_size, kernel_size), blur_sigma)
# Apply random noise
if random_distortion == 'noise' and random_noise:
noise_type = np.random.choice(['gaussian', 'laplace', 'poisson'])
noise_scale = (20 * np.random.random() + 20)
if noise_type == 'gaussian':
noise = np.random.normal(scale=noise_scale, size=img.shape)
img += noise / 255.0
elif noise_type == 'laplace':
noise = np.random.laplace(scale=noise_scale, size=img.shape)
img += noise / 255.0
elif noise_type == 'poisson':
noise_lam = (15 * np.random.random() + 15)
noise = np.random.poisson(lam=noise_lam, size=img.shape)
img += noise / 255.0
# Apply random jpeg compression
if random_distortion == 'jpeg' and random_jpeg:
img = np.clip(img*255, 0, 255).astype(np.uint8)
jpeg_compression_level = np.random.randint(50, 85)
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_compression_level]
_, enc_img = cv2.imencode('.jpg', img, encode_param)
img = cv2.imdecode(enc_img, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255.0
# Apply random downsampling
if random_distortion == 'down' and random_downsample:
down_res = np.random.randint(int(0.125*resolution), int(0.25*resolution))
img = cv2.resize(img, (down_res, down_res), interpolation=cv2.INTER_CUBIC)
img = cv2.resize(img, (resolution, resolution), interpolation=cv2.INTER_CUBIC)
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate) img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate)
img = np.clip(img.astype(np.float32), 0, 1) img = np.clip(img.astype(np.float32), 0, 1)