mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 21:12:07 -07:00
refactoring
This commit is contained in:
parent
44798c2b85
commit
8a223845fb
19 changed files with 963 additions and 468 deletions
114
samples/SampleGeneratorFace.py
Normal file
114
samples/SampleGeneratorFace.py
Normal file
|
@ -0,0 +1,114 @@
|
|||
import traceback
|
||||
import numpy as np
|
||||
import random
|
||||
import cv2
|
||||
|
||||
from utils import iter_utils
|
||||
|
||||
from samples import SampleType
|
||||
from samples import SampleProcessor
|
||||
from samples import SampleLoader
|
||||
from samples import SampleGeneratorBase
|
||||
|
||||
'''
|
||||
output_sample_types = [
|
||||
[SampleProcessor.TypeFlags, size, (optional)random_sub_size] ,
|
||||
...
|
||||
]
|
||||
'''
|
||||
class SampleGeneratorFace(SampleGeneratorBase):
|
||||
def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, sample_process_options=SampleProcessor.Options(), output_sample_types=[], **kwargs):
|
||||
super().__init__(samples_path, debug, batch_size)
|
||||
self.sample_process_options = sample_process_options
|
||||
self.output_sample_types = output_sample_types
|
||||
|
||||
if sort_by_yaw_target_samples_path is not None:
|
||||
self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET
|
||||
elif sort_by_yaw:
|
||||
self.sample_type = SampleType.FACE_YAW_SORTED
|
||||
else:
|
||||
self.sample_type = SampleType.FACE
|
||||
|
||||
self.samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path)
|
||||
|
||||
if self.debug:
|
||||
self.generator_samples = [ self.samples ]
|
||||
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, 0 )]
|
||||
else:
|
||||
if len(self.samples) > 1:
|
||||
self.generator_samples = [ self.samples[0::2],
|
||||
self.samples[1::2] ]
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, 0 ),
|
||||
iter_utils.SubprocessGenerator ( self.batch_func, 1 )]
|
||||
else:
|
||||
self.generator_samples = [ self.samples ]
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, 0 )]
|
||||
|
||||
self.generator_counter = -1
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
self.generator_counter += 1
|
||||
generator = self.generators[self.generator_counter % len(self.generators) ]
|
||||
return next(generator)
|
||||
|
||||
def batch_func(self, generator_id):
|
||||
samples = self.generator_samples[generator_id]
|
||||
data_len = len(samples)
|
||||
if data_len == 0:
|
||||
raise ValueError('No training data provided.')
|
||||
|
||||
if self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
||||
if all ( [ x == None for x in samples] ):
|
||||
raise ValueError('Not enough training data. Gather more faces!')
|
||||
|
||||
if self.sample_type == SampleType.FACE:
|
||||
shuffle_idxs = []
|
||||
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
||||
shuffle_idxs = []
|
||||
shuffle_idxs_2D = [[]]*data_len
|
||||
|
||||
while True:
|
||||
|
||||
batches = None
|
||||
for n_batch in range(self.batch_size):
|
||||
while True:
|
||||
sample = None
|
||||
|
||||
if self.sample_type == SampleType.FACE:
|
||||
if len(shuffle_idxs) == 0:
|
||||
shuffle_idxs = random.sample( range(data_len), data_len )
|
||||
idx = shuffle_idxs.pop()
|
||||
sample = samples[ idx ]
|
||||
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
||||
if len(shuffle_idxs) == 0:
|
||||
shuffle_idxs = random.sample( range(data_len), data_len )
|
||||
|
||||
idx = shuffle_idxs.pop()
|
||||
if samples[idx] != None:
|
||||
if len(shuffle_idxs_2D[idx]) == 0:
|
||||
shuffle_idxs_2D[idx] = random.sample( range(len(samples[idx])), len(samples[idx]) )
|
||||
|
||||
idx2 = shuffle_idxs_2D[idx].pop()
|
||||
sample = samples[idx][idx2]
|
||||
|
||||
if sample is not None:
|
||||
try:
|
||||
x = SampleProcessor.process (sample, self.sample_process_options, self.output_sample_types, self.debug)
|
||||
except:
|
||||
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
|
||||
|
||||
if type(x) != tuple and type(x) != list:
|
||||
raise Exception('SampleProcessor.process returns NOT tuple/list')
|
||||
|
||||
if batches is None:
|
||||
batches = [ [] for _ in range(len(x)) ]
|
||||
|
||||
for i in range(len(x)):
|
||||
batches[i].append ( x[i] )
|
||||
|
||||
break
|
||||
|
||||
yield [ np.array(batch) for batch in batches]
|
Loading…
Add table
Add a link
Reference in a new issue