mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-19 21:13:20 -07:00
refactoring
This commit is contained in:
parent
44798c2b85
commit
8a223845fb
19 changed files with 963 additions and 468 deletions
|
@ -43,7 +43,36 @@ def DSSIMMaskLossClass(tf):
|
|||
return total_loss
|
||||
|
||||
return DSSIMMaskLoss
|
||||
|
||||
|
||||
def DSSIMPatchMaskLossClass(tf):
|
||||
class DSSIMPatchMaskLoss(object):
|
||||
def __init__(self, mask_list, is_tanh=False):
|
||||
self.mask_list = mask_list
|
||||
self.is_tanh = is_tanh
|
||||
|
||||
def __call__(self,y_true, y_pred):
|
||||
total_loss = None
|
||||
for mask in self.mask_list:
|
||||
#import code
|
||||
#code.interact(local=dict(globals(), **locals()))
|
||||
|
||||
y_true = tf.extract_image_patches ( y_true, (1,9,9,1), (1,1,1,1), (1,8,8,1), 'VALID' )
|
||||
y_pred = tf.extract_image_patches ( y_pred, (1,9,9,1), (1,1,1,1), (1,8,8,1), 'VALID' )
|
||||
mask = tf.extract_image_patches ( tf.tile(mask,[1,1,1,3]) , (1,9,9,1), (1,1,1,1), (1,8,8,1), 'VALID' )
|
||||
if not self.is_tanh:
|
||||
loss = (1.0 - tf.image.ssim (y_true*mask, y_pred*mask, 1.0)) / 2.0
|
||||
else:
|
||||
loss = (1.0 - tf.image.ssim ( (y_true/2+0.5)*(mask/2+0.5), (y_pred/2+0.5)*(mask/2+0.5), 1.0)) / 2.0
|
||||
|
||||
if total_loss is None:
|
||||
total_loss = loss
|
||||
else:
|
||||
total_loss += loss
|
||||
|
||||
return total_loss
|
||||
|
||||
return DSSIMPatchMaskLoss
|
||||
|
||||
def DSSIMLossClass(tf):
|
||||
class DSSIMLoss(object):
|
||||
def __init__(self, is_tanh=False):
|
||||
|
@ -57,6 +86,125 @@ def DSSIMLossClass(tf):
|
|||
|
||||
return DSSIMLoss
|
||||
|
||||
def rgb_to_lab(tf, rgb_input):
|
||||
with tf.name_scope("rgb_to_lab"):
|
||||
srgb_pixels = tf.reshape(rgb_input, [-1, 3])
|
||||
|
||||
with tf.name_scope("srgb_to_xyz"):
|
||||
linear_mask = tf.cast(srgb_pixels <= 0.04045, dtype=tf.float32)
|
||||
exponential_mask = tf.cast(srgb_pixels > 0.04045, dtype=tf.float32)
|
||||
rgb_pixels = (srgb_pixels / 12.92 * linear_mask) + (((srgb_pixels + 0.055) / 1.055) ** 2.4) * exponential_mask
|
||||
rgb_to_xyz = tf.constant([
|
||||
# X Y Z
|
||||
[0.412453, 0.212671, 0.019334], # R
|
||||
[0.357580, 0.715160, 0.119193], # G
|
||||
[0.180423, 0.072169, 0.950227], # B
|
||||
])
|
||||
xyz_pixels = tf.matmul(rgb_pixels, rgb_to_xyz)
|
||||
|
||||
# https://en.wikipedia.org/wiki/Lab_color_space#CIELAB-CIEXYZ_conversions
|
||||
with tf.name_scope("xyz_to_cielab"):
|
||||
# convert to fx = f(X/Xn), fy = f(Y/Yn), fz = f(Z/Zn)
|
||||
|
||||
# normalize for D65 white point
|
||||
xyz_normalized_pixels = tf.multiply(xyz_pixels, [1/0.950456, 1.0, 1/1.088754])
|
||||
|
||||
epsilon = 6/29
|
||||
linear_mask = tf.cast(xyz_normalized_pixels <= (epsilon**3), dtype=tf.float32)
|
||||
exponential_mask = tf.cast(xyz_normalized_pixels > (epsilon**3), dtype=tf.float32)
|
||||
fxfyfz_pixels = (xyz_normalized_pixels / (3 * epsilon**2) + 4/29) * linear_mask + (xyz_normalized_pixels ** (1/3)) * exponential_mask
|
||||
|
||||
# convert to lab
|
||||
fxfyfz_to_lab = tf.constant([
|
||||
# l a b
|
||||
[ 0.0, 500.0, 0.0], # fx
|
||||
[116.0, -500.0, 200.0], # fy
|
||||
[ 0.0, 0.0, -200.0], # fz
|
||||
])
|
||||
lab_pixels = tf.matmul(fxfyfz_pixels, fxfyfz_to_lab) + tf.constant([-16.0, 0.0, 0.0])
|
||||
#output [0, 100] , ~[-110, 110], ~[-110, 110]
|
||||
lab_pixels = lab_pixels / tf.constant([100.0, 220.0, 220.0 ]) + tf.constant([0.0, 0.5, 0.5])
|
||||
#output [0-1, 0-1, 0-1]
|
||||
return tf.reshape(lab_pixels, tf.shape(rgb_input))
|
||||
|
||||
def lab_to_rgb(tf, lab):
|
||||
with tf.name_scope("lab_to_rgb"):
|
||||
lab_pixels = tf.reshape(lab, [-1, 3])
|
||||
|
||||
# https://en.wikipedia.org/wiki/Lab_color_space#CIELAB-CIEXYZ_conversions
|
||||
with tf.name_scope("cielab_to_xyz"):
|
||||
# convert to fxfyfz
|
||||
lab_to_fxfyfz = tf.constant([
|
||||
# fx fy fz
|
||||
[1/116.0, 1/116.0, 1/116.0], # l
|
||||
[1/500.0, 0.0, 0.0], # a
|
||||
[ 0.0, 0.0, -1/200.0], # b
|
||||
])
|
||||
fxfyfz_pixels = tf.matmul(lab_pixels + tf.constant([16.0, 0.0, 0.0]), lab_to_fxfyfz)
|
||||
|
||||
# convert to xyz
|
||||
epsilon = 6/29
|
||||
linear_mask = tf.cast(fxfyfz_pixels <= epsilon, dtype=tf.float32)
|
||||
exponential_mask = tf.cast(fxfyfz_pixels > epsilon, dtype=tf.float32)
|
||||
xyz_pixels = (3 * epsilon**2 * (fxfyfz_pixels - 4/29)) * linear_mask + (fxfyfz_pixels ** 3) * exponential_mask
|
||||
|
||||
# denormalize for D65 white point
|
||||
xyz_pixels = tf.multiply(xyz_pixels, [0.950456, 1.0, 1.088754])
|
||||
|
||||
with tf.name_scope("xyz_to_srgb"):
|
||||
xyz_to_rgb = tf.constant([
|
||||
# r g b
|
||||
[ 3.2404542, -0.9692660, 0.0556434], # x
|
||||
[-1.5371385, 1.8760108, -0.2040259], # y
|
||||
[-0.4985314, 0.0415560, 1.0572252], # z
|
||||
])
|
||||
rgb_pixels = tf.matmul(xyz_pixels, xyz_to_rgb)
|
||||
# avoid a slightly negative number messing up the conversion
|
||||
rgb_pixels = tf.clip_by_value(rgb_pixels, 0.0, 1.0)
|
||||
linear_mask = tf.cast(rgb_pixels <= 0.0031308, dtype=tf.float32)
|
||||
exponential_mask = tf.cast(rgb_pixels > 0.0031308, dtype=tf.float32)
|
||||
srgb_pixels = (rgb_pixels * 12.92 * linear_mask) + ((rgb_pixels ** (1/2.4) * 1.055) - 0.055) * exponential_mask
|
||||
|
||||
return tf.reshape(srgb_pixels, tf.shape(lab))
|
||||
|
||||
def DSSIMPatchLossClass(tf, keras):
|
||||
class DSSIMPatchLoss(object):
|
||||
def __init__(self, is_tanh=False):
|
||||
self.is_tanh = is_tanh
|
||||
|
||||
def __call__(self,y_true, y_pred):
|
||||
|
||||
y_pred_lab = rgb_to_lab(tf, y_pred)
|
||||
y_true_lab = rgb_to_lab(tf, y_true)
|
||||
|
||||
|
||||
#import code
|
||||
#code.interact(local=dict(globals(), **locals()))
|
||||
|
||||
return keras.backend.mean ( keras.backend.square(y_true_lab - y_pred_lab) ) # + (1.0 - tf.image.ssim (y_true, y_pred, 1.0)) / 2.0
|
||||
|
||||
if not self.is_tanh:
|
||||
return (1.0 - tf.image.ssim (y_true, y_pred, 1.0)) / 2.0
|
||||
else:
|
||||
return (1.0 - tf.image.ssim ((y_true/2+0.5), (y_pred/2+0.5), 1.0)) / 2.0
|
||||
|
||||
#y_true_72 = tf.extract_image_patches ( y_true, (1,8,8,1), (1,1,1,1), (1,8,8,1), 'VALID' )
|
||||
#y_pred_72 = tf.extract_image_patches ( y_pred, (1,8,8,1), (1,1,1,1), (1,8,8,1), 'VALID' )
|
||||
|
||||
#y_true_36 = tf.extract_image_patches ( y_true, (1,8,8,1), (1,2,2,1), (1,8,8,1), 'VALID' )
|
||||
#y_pred_36 = tf.extract_image_patches ( y_pred, (1,8,8,1), (1,2,2,1), (1,8,8,1), 'VALID' )
|
||||
|
||||
#if not self.is_tanh:
|
||||
# return (1.0 - tf.image.ssim (y_true_72, y_pred_72, 1.0)) / 2.0 + \
|
||||
# (1.0 - tf.image.ssim (y_true_36, y_pred_36, 1.0)) / 2.0
|
||||
#
|
||||
#else:
|
||||
# return (1.0 - tf.image.ssim ((y_true_72/2+0.5), (y_pred_72/2+0.5), 1.0)) / 2.0 + \
|
||||
# (1.0 - tf.image.ssim ((y_true_36/2+0.5), (y_pred_36/2+0.5), 1.0)) / 2.0
|
||||
|
||||
|
||||
return DSSIMPatchLoss
|
||||
|
||||
def MSEMaskLossClass(keras):
|
||||
class MSEMaskLoss(object):
|
||||
def __init__(self, mask_list, is_tanh=False):
|
||||
|
@ -208,4 +356,291 @@ def total_variation_loss(keras, x):
|
|||
a = K.square(x[:, :H - 1, :W - 1, :] - x[:, 1:, :W - 1, :])
|
||||
b = K.square(x[:, :H - 1, :W - 1, :] - x[:, :H - 1, 1:, :])
|
||||
|
||||
return K.mean (a+b)
|
||||
return K.mean (a+b)
|
||||
|
||||
|
||||
# Defines the Unet generator.
|
||||
# |num_downs|: number of downsamplings in UNet. For example,
|
||||
# if |num_downs| == 7, image of size 128x128 will become of size 1x1
|
||||
# at the bottleneck
|
||||
def UNet(keras, output_nc, num_downs, ngf=64, use_dropout=False):
|
||||
Conv2D = keras.layers.convolutional.Conv2D
|
||||
Conv2DTranspose = keras.layers.convolutional.Conv2DTranspose
|
||||
LeakyReLU = keras.layers.advanced_activations.LeakyReLU
|
||||
BatchNormalization = keras.layers.BatchNormalization
|
||||
ReLU = keras.layers.ReLU
|
||||
tanh = keras.layers.Activation('tanh')
|
||||
Dropout = keras.layers.Dropout
|
||||
Concatenate = keras.layers.Concatenate
|
||||
ZeroPadding2D = keras.layers.ZeroPadding2D
|
||||
|
||||
conv_kernel_initializer = keras.initializers.RandomNormal(0, 0.02)
|
||||
norm_gamma_initializer = keras.initializers.RandomNormal(1, 0.02)
|
||||
|
||||
def UNetSkipConnection(outer_nc, inner_nc, sub_model=None, outermost=False, innermost=False, use_dropout=False):
|
||||
def func(inp):
|
||||
downconv_pad = ZeroPadding2D( (1,1) )
|
||||
downconv = Conv2D(inner_nc, kernel_size=4, kernel_initializer=conv_kernel_initializer, strides=2, padding='valid', use_bias=False)
|
||||
downrelu = LeakyReLU(0.2)
|
||||
downnorm = BatchNormalization( gamma_initializer=norm_gamma_initializer )
|
||||
|
||||
#upconv_pad = ZeroPadding2D( (0,0) )
|
||||
upconv = Conv2DTranspose(outer_nc, kernel_size=4, kernel_initializer=conv_kernel_initializer, strides=2, padding='same', use_bias=False)
|
||||
uprelu = ReLU()
|
||||
upnorm = BatchNormalization( gamma_initializer=norm_gamma_initializer )
|
||||
|
||||
if outermost:
|
||||
x = inp
|
||||
x = downconv(downconv_pad(x))
|
||||
x = sub_model(x)
|
||||
x = uprelu(x)
|
||||
#x = upconv(upconv_pad(x))
|
||||
x = upconv(x)
|
||||
x = tanh(x)
|
||||
elif innermost:
|
||||
x = inp
|
||||
x = downrelu(x)
|
||||
x = downconv(downconv_pad(x))
|
||||
x = uprelu(x)
|
||||
#
|
||||
#
|
||||
#x = upconv(upconv_pad(x))
|
||||
x = upconv(x)
|
||||
x = upnorm(x)
|
||||
|
||||
#import code
|
||||
#code.interact(local=dict(globals(), **locals()))
|
||||
x = Concatenate(axis=3)([inp, x])
|
||||
|
||||
else:
|
||||
x = inp
|
||||
x = downrelu(x)
|
||||
x = downconv(downconv_pad(x))
|
||||
x = downnorm(x)
|
||||
x = sub_model(x)
|
||||
x = uprelu(x)
|
||||
#x = upconv(upconv_pad(x))
|
||||
x = upconv(x)
|
||||
x = upnorm(x)
|
||||
if use_dropout:
|
||||
x = Dropout(0.5)(x)
|
||||
x = Concatenate(axis=3)([inp, x])
|
||||
|
||||
return x
|
||||
|
||||
return func
|
||||
|
||||
def func(inp):
|
||||
unet_block = UNetSkipConnection(ngf * 8, ngf * 8, sub_model=None, innermost=True)
|
||||
|
||||
for i in range(num_downs - 5):
|
||||
unet_block = UNetSkipConnection(ngf * 8, ngf * 8, sub_model=unet_block, use_dropout=use_dropout)
|
||||
|
||||
unet_block = UNetSkipConnection(ngf * 4 , ngf * 8, sub_model=unet_block)
|
||||
unet_block = UNetSkipConnection(ngf * 2 , ngf * 4, sub_model=unet_block)
|
||||
unet_block = UNetSkipConnection(ngf , ngf * 2, sub_model=unet_block)
|
||||
unet_block = UNetSkipConnection(output_nc, ngf , sub_model=unet_block, outermost=True)
|
||||
|
||||
return unet_block(inp)
|
||||
|
||||
return func
|
||||
|
||||
#predicts future_image_tensor based on past_image_tensor
|
||||
def UNetStreamPredictor(keras, tf, output_nc, num_downs, ngf=32, use_dropout=False):
|
||||
Conv2D = keras.layers.convolutional.Conv2D
|
||||
Conv2DTranspose = keras.layers.convolutional.Conv2DTranspose
|
||||
LeakyReLU = keras.layers.advanced_activations.LeakyReLU
|
||||
BatchNormalization = keras.layers.BatchNormalization
|
||||
ReLU = keras.layers.ReLU
|
||||
tanh = keras.layers.Activation('tanh')
|
||||
ReflectionPadding2D = ReflectionPadding2DClass(keras, tf)
|
||||
ZeroPadding2D = keras.layers.ZeroPadding2D
|
||||
Dropout = keras.layers.Dropout
|
||||
Concatenate = keras.layers.Concatenate
|
||||
|
||||
conv_kernel_initializer = keras.initializers.RandomNormal(0, 0.02)
|
||||
norm_gamma_initializer = keras.initializers.RandomNormal(1, 0.02)
|
||||
|
||||
def func(past_image_tensor, future_image_tensor):
|
||||
def model1(inp):
|
||||
x = inp
|
||||
x = ReflectionPadding2D((3,3))(x)
|
||||
x = Conv2D(ngf, kernel_size=7, kernel_initializer=conv_kernel_initializer, strides=1, padding='valid', use_bias=False)(x)
|
||||
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||
x = ReLU()(x)
|
||||
|
||||
x = ZeroPadding2D((1,1))(x)
|
||||
x = Conv2D(ngf*2, kernel_size=3, kernel_initializer=conv_kernel_initializer, strides=1, padding='valid', use_bias=False)(x)
|
||||
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||
x = ReLU()(x)
|
||||
|
||||
x = ZeroPadding2D((1,1))(x)
|
||||
x = Conv2D(ngf*4, kernel_size=3, kernel_initializer=conv_kernel_initializer, strides=1, padding='valid', use_bias=False)(x)
|
||||
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||
x = ReLU()(x)
|
||||
|
||||
return x
|
||||
|
||||
def model3(inp):
|
||||
x = inp
|
||||
|
||||
x = ZeroPadding2D((1,1))(x)
|
||||
x = Conv2D(ngf*2, kernel_size=3, kernel_initializer=conv_kernel_initializer, strides=1, padding='valid', use_bias=False)(x)
|
||||
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||
x = ReLU()(x)
|
||||
|
||||
x = ZeroPadding2D((1,1))(x)
|
||||
x = Conv2D(ngf, kernel_size=3, kernel_initializer=conv_kernel_initializer, strides=1, padding='valid', use_bias=False)(x)
|
||||
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||
x = ReLU()(x)
|
||||
|
||||
x = ReflectionPadding2D((3,3))(x)
|
||||
x = Conv2D(output_nc, kernel_size=7, kernel_initializer=conv_kernel_initializer, strides=1, padding='valid', use_bias=False)(x)
|
||||
x = tanh(x)
|
||||
return x
|
||||
|
||||
model = UNet(keras, ngf*4, num_downs=num_downs, ngf=ngf*4*4, #ngf=ngf*4*4,
|
||||
use_dropout=use_dropout)
|
||||
return model3 ( model( Concatenate(axis=3)([ model1(past_image_tensor), model1(future_image_tensor) ]) ) )
|
||||
|
||||
return func
|
||||
|
||||
|
||||
def Resnet(keras, tf, output_nc, ngf=64, use_dropout=False, n_blocks=6):
|
||||
Conv2D = keras.layers.convolutional.Conv2D
|
||||
Conv2DTranspose = keras.layers.convolutional.Conv2DTranspose
|
||||
LeakyReLU = keras.layers.advanced_activations.LeakyReLU
|
||||
BatchNormalization = keras.layers.BatchNormalization
|
||||
ReLU = keras.layers.ReLU
|
||||
Add = keras.layers.Add
|
||||
tanh = keras.layers.Activation('tanh')
|
||||
ReflectionPadding2D = ReflectionPadding2DClass(keras, tf)
|
||||
ZeroPadding2D = keras.layers.ZeroPadding2D
|
||||
Dropout = keras.layers.Dropout
|
||||
Concatenate = keras.layers.Concatenate
|
||||
|
||||
conv_kernel_initializer = keras.initializers.RandomNormal(0, 0.02)
|
||||
norm_gamma_initializer = keras.initializers.RandomNormal(1, 0.02)
|
||||
use_bias = False
|
||||
|
||||
def ResnetBlock(dim, use_dropout, use_bias):
|
||||
|
||||
def func(inp):
|
||||
x = inp
|
||||
|
||||
x = ReflectionPadding2D((1,1))(x)
|
||||
x = Conv2D(dim, kernel_size=3, kernel_initializer=conv_kernel_initializer, padding='valid', use_bias=use_bias)(x)
|
||||
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||
x = ReLU()(x)
|
||||
|
||||
if use_dropout:
|
||||
x = Dropout(0.5)(x)
|
||||
|
||||
x = ReflectionPadding2D((1,1))(x)
|
||||
x = Conv2D(dim, kernel_size=3, kernel_initializer=conv_kernel_initializer, padding='valid', use_bias=use_bias)(x)
|
||||
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||
|
||||
return Add()([x,inp])
|
||||
|
||||
return func
|
||||
|
||||
def func(inp):
|
||||
x = inp
|
||||
|
||||
x = ReflectionPadding2D((3,3))(x)
|
||||
x = Conv2D(ngf, kernel_size=7, kernel_initializer=conv_kernel_initializer, padding='valid', use_bias=use_bias)(x)
|
||||
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||
x = ReLU()(x)
|
||||
|
||||
n_downsampling = 2
|
||||
for i in range(n_downsampling):
|
||||
x = ZeroPadding2D( (1,1) ) (x)
|
||||
x = Conv2D(ngf * (2**i) * 2, kernel_size=3, kernel_initializer=conv_kernel_initializer, strides=2, padding='valid', use_bias=use_bias)(x)
|
||||
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||
x = ReLU()(x)
|
||||
|
||||
for i in range(n_blocks):
|
||||
x = ResnetBlock(ngf*(2**n_downsampling), use_dropout=use_dropout, use_bias=use_bias)(x)
|
||||
|
||||
for i in range(n_downsampling):
|
||||
x = ZeroPadding2D( (1,1) ) (x)
|
||||
x = Conv2DTranspose( int(ngf* (2**(n_downsampling - i)) /2), kernel_size=3, kernel_initializer=conv_kernel_initializer, strides=2, padding='valid', output_padding=1, use_bias=use_bias)(x)
|
||||
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||
x = ReLU()(x)
|
||||
|
||||
x = ReflectionPadding2D((3,3))(x)
|
||||
x = Conv2D(output_nc, kernel_size=7, kernel_initializer=conv_kernel_initializer, padding='valid')(x)
|
||||
x = tanh(x)
|
||||
|
||||
return x
|
||||
|
||||
return func
|
||||
|
||||
def NLayerDiscriminator(keras, tf, ndf=64, n_layers=3, use_sigmoid=False):
|
||||
Conv2D = keras.layers.convolutional.Conv2D
|
||||
Conv2DTranspose = keras.layers.convolutional.Conv2DTranspose
|
||||
LeakyReLU = keras.layers.advanced_activations.LeakyReLU
|
||||
BatchNormalization = keras.layers.BatchNormalization
|
||||
ReLU = keras.layers.ReLU
|
||||
Add = keras.layers.Add
|
||||
tanh = keras.layers.Activation('tanh')
|
||||
sigmoid = keras.layers.Activation('sigmoid')
|
||||
ZeroPadding2D = keras.layers.ZeroPadding2D
|
||||
Dropout = keras.layers.Dropout
|
||||
Concatenate = keras.layers.Concatenate
|
||||
|
||||
conv_kernel_initializer = keras.initializers.RandomNormal(0, 0.02)
|
||||
norm_gamma_initializer = keras.initializers.RandomNormal(1, 0.02)
|
||||
use_bias = False
|
||||
|
||||
def func(inp):
|
||||
x = inp
|
||||
|
||||
x = ZeroPadding2D( (1,1) ) (x)
|
||||
x = Conv2D(ndf, kernel_size=4, kernel_initializer=conv_kernel_initializer, strides=2, padding='valid', use_bias=use_bias)(x)
|
||||
x = LeakyReLU(0.2)(x)
|
||||
|
||||
nf_mult = 1
|
||||
nf_mult_prev = 1
|
||||
for n in range(1, n_layers):
|
||||
nf_mult = min(2**n, 8)
|
||||
|
||||
x = ZeroPadding2D( (1,1) ) (x)
|
||||
x = Conv2D(ndf * nf_mult, kernel_size=4, kernel_initializer=conv_kernel_initializer, strides=2, padding='valid', use_bias=use_bias)(x)
|
||||
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||
x = LeakyReLU(0.2)(x)
|
||||
|
||||
nf_mult = min(2**n_layers, 8)
|
||||
|
||||
#x = ZeroPadding2D( (1,1) ) (x)
|
||||
x = Conv2D(ndf * nf_mult, kernel_size=4, kernel_initializer=conv_kernel_initializer, strides=1, padding='same', use_bias=use_bias)(x)
|
||||
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||
x = LeakyReLU(0.2)(x)
|
||||
|
||||
#x = ZeroPadding2D( (1,1) ) (x)
|
||||
x = Conv2D(1, kernel_size=4, kernel_initializer=conv_kernel_initializer, strides=1, padding='same', use_bias=use_bias)(x)
|
||||
|
||||
if use_sigmoid:
|
||||
x = sigmoid(x)
|
||||
|
||||
return x
|
||||
|
||||
return func
|
||||
|
||||
def ReflectionPadding2DClass(keras, tf):
|
||||
|
||||
class ReflectionPadding2D(keras.layers.Layer):
|
||||
def __init__(self, padding=(1, 1), **kwargs):
|
||||
self.padding = tuple(padding)
|
||||
self.input_spec = [keras.layers.InputSpec(ndim=4)]
|
||||
super(ReflectionPadding2D, self).__init__(**kwargs)
|
||||
|
||||
def compute_output_shape(self, s):
|
||||
""" If you are using "channels_last" configuration"""
|
||||
return (s[0], s[1] + 2 * self.padding[0], s[2] + 2 * self.padding[1], s[3])
|
||||
|
||||
def call(self, x, mask=None):
|
||||
w_pad,h_pad = self.padding
|
||||
return tf.pad(x, [[0,0], [h_pad,h_pad], [w_pad,w_pad], [0,0] ], 'REFLECT')
|
||||
|
||||
return ReflectionPadding2D
|
Loading…
Add table
Add a link
Reference in a new issue