mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-15 01:23:44 -07:00
_
This commit is contained in:
parent
565c131b97
commit
8969e80275
3 changed files with 15 additions and 7 deletions
|
@ -21,7 +21,7 @@ class Model(ModelBase):
|
|||
def onInitializeOptions(self, is_first_run, ask_override):
|
||||
default_face_type = 'f'
|
||||
if is_first_run:
|
||||
self.options['face_type'] = io.input_str ("Half or Full face? (h/f, ?:help skip:f) : ", default_face_type, ['h','f'], help_message="Half face has better resolution, but covers less area of cheeks.").lower()
|
||||
self.options['face_type'] = io.input_str ("Half or Full face? (h/f, ?:help skip:f) : ", default_face_type, ['h','f'], help_message="").lower()
|
||||
else:
|
||||
self.options['face_type'] = self.options.get('face_type', default_face_type)
|
||||
|
||||
|
@ -48,12 +48,12 @@ class Model(ModelBase):
|
|||
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(random_flip=True, motion_blur = [25, 1] ),
|
||||
output_sample_types=[ [f.WARPED_TRANSFORMED | face_type | f.MODE_BGR_SHUFFLE | f.OPT_APPLY_MOTION_BLUR, self.resolution],
|
||||
[f.WARPED_TRANSFORMED | face_type | f.MODE_M | f.FACE_MASK_FULL, self.resolution]
|
||||
[f.WARPED_TRANSFORMED | face_type | f.MODE_M | f.FACE_MASK_FULL, self.resolution],
|
||||
]),
|
||||
|
||||
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(random_flip=True ),
|
||||
output_sample_types=[ [f.TRANSFORMED | face_type | f.MODE_BGR_SHUFFLE, self.resolution]
|
||||
output_sample_types=[ [f.TRANSFORMED | face_type | f.MODE_BGR_SHUFFLE, self.resolution],
|
||||
])
|
||||
])
|
||||
|
||||
|
@ -71,8 +71,8 @@ class Model(ModelBase):
|
|||
|
||||
#override
|
||||
def onGetPreview(self, sample):
|
||||
test_A = sample[0][0][0:4] #first 4 samples
|
||||
test_B = sample[1][0][0:4] #first 4 samples
|
||||
test_A = sample[0][0][0:4] #first 4 samples
|
||||
test_B = sample[1][0][0:4] #first 4 samples
|
||||
|
||||
mAA = self.fan_seg.extract(test_A)
|
||||
mBB = self.fan_seg.extract(test_B)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue