mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-15 01:23:44 -07:00
upd leras
This commit is contained in:
parent
757ec77e44
commit
884913e35d
2 changed files with 97 additions and 2 deletions
|
@ -78,6 +78,7 @@ def initialize_layers(nn):
|
|||
|
||||
def init_weights(self):
|
||||
nn.tf_init_weights(self.get_weights())
|
||||
|
||||
nn.Saveable = Saveable
|
||||
|
||||
class LayerBase():
|
||||
|
@ -318,7 +319,7 @@ def initialize_layers(nn):
|
|||
dim_size = dim_size * stride_size
|
||||
return dim_size
|
||||
nn.Conv2DTranspose = Conv2DTranspose
|
||||
|
||||
|
||||
class BlurPool(LayerBase):
|
||||
def __init__(self, filt_size=3, stride=2, **kwargs ):
|
||||
|
||||
|
@ -439,6 +440,44 @@ def initialize_layers(nn):
|
|||
return x
|
||||
nn.Dense = Dense
|
||||
|
||||
class InstanceNorm2D(LayerBase):
|
||||
def __init__(self, in_ch, dtype=None, **kwargs):
|
||||
self.in_ch = in_ch
|
||||
|
||||
if dtype is None:
|
||||
dtype = nn.tf_floatx
|
||||
self.dtype = dtype
|
||||
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def build_weights(self):
|
||||
kernel_initializer = tf.initializers.glorot_uniform(dtype=self.dtype)
|
||||
self.weight = tf.get_variable("weight", (self.in_ch,), dtype=self.dtype, initializer=kernel_initializer )
|
||||
self.bias = tf.get_variable("bias", (self.in_ch,), dtype=self.dtype, initializer=tf.initializers.zeros() )
|
||||
|
||||
def get_weights(self):
|
||||
return [self.weight, self.bias]
|
||||
|
||||
def __call__(self, x):
|
||||
if nn.data_format == "NHWC":
|
||||
shape = (1,1,1,self.in_ch)
|
||||
else:
|
||||
shape = (1,self.in_ch,1,1)
|
||||
|
||||
weight = tf.reshape ( self.weight , shape )
|
||||
bias = tf.reshape ( self.bias , shape )
|
||||
|
||||
x_mean = tf.reduce_mean(x, axis=nn.conv2d_spatial_axes, keepdims=True )
|
||||
x_std = tf.math.reduce_std(x, axis=nn.conv2d_spatial_axes, keepdims=True ) + 1e-5
|
||||
|
||||
x = (x - x_mean) / x_std
|
||||
x *= weight
|
||||
x += bias
|
||||
|
||||
return x
|
||||
|
||||
nn.InstanceNorm2D = InstanceNorm2D
|
||||
|
||||
class BatchNorm2D(LayerBase):
|
||||
"""
|
||||
currently not for training
|
||||
|
@ -477,4 +516,58 @@ def initialize_layers(nn):
|
|||
x += bias
|
||||
return x
|
||||
|
||||
nn.BatchNorm2D = BatchNorm2D
|
||||
nn.BatchNorm2D = BatchNorm2D
|
||||
|
||||
class AdaIN(LayerBase):
|
||||
"""
|
||||
"""
|
||||
def __init__(self, in_ch, mlp_ch, kernel_initializer=None, dtype=None, **kwargs):
|
||||
self.in_ch = in_ch
|
||||
self.mlp_ch = mlp_ch
|
||||
self.kernel_initializer = kernel_initializer
|
||||
|
||||
if dtype is None:
|
||||
dtype = nn.tf_floatx
|
||||
self.dtype = dtype
|
||||
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def build_weights(self):
|
||||
kernel_initializer = self.kernel_initializer
|
||||
if kernel_initializer is None:
|
||||
kernel_initializer = tf.initializers.he_normal()#(dtype=self.dtype)
|
||||
|
||||
self.weight1 = tf.get_variable("weight1", (self.mlp_ch, self.in_ch), dtype=self.dtype, initializer=kernel_initializer)
|
||||
self.bias1 = tf.get_variable("bias1", (self.in_ch,), dtype=self.dtype, initializer=tf.initializers.zeros())
|
||||
self.weight2 = tf.get_variable("weight2", (self.mlp_ch, self.in_ch), dtype=self.dtype, initializer=kernel_initializer)
|
||||
self.bias2 = tf.get_variable("bias2", (self.in_ch,), dtype=self.dtype, initializer=tf.initializers.zeros())
|
||||
|
||||
def get_weights(self):
|
||||
return [self.weight1, self.bias1, self.weight2, self.bias2]
|
||||
|
||||
def __call__(self, inputs):
|
||||
x, mlp = inputs
|
||||
|
||||
gamma = tf.matmul(mlp, self.weight1)
|
||||
gamma = tf.add(gamma, tf.reshape(self.bias1, (1,self.in_ch) ) )
|
||||
|
||||
beta = tf.matmul(mlp, self.weight2)
|
||||
beta = tf.add(beta, tf.reshape(self.bias2, (1,self.in_ch) ) )
|
||||
|
||||
|
||||
if nn.data_format == "NHWC":
|
||||
shape = (-1,1,1,self.in_ch)
|
||||
else:
|
||||
shape = (-1,self.in_ch,1,1)
|
||||
|
||||
x_mean = tf.reduce_mean(x, axis=nn.conv2d_spatial_axes, keepdims=True )
|
||||
x_std = tf.math.reduce_std(x, axis=nn.conv2d_spatial_axes, keepdims=True ) + 1e-5
|
||||
|
||||
x = (x - x_mean) / x_std
|
||||
x *= tf.reshape(gamma, shape)
|
||||
|
||||
x += tf.reshape(beta, shape)
|
||||
|
||||
return x
|
||||
|
||||
nn.AdaIN = AdaIN
|
Loading…
Add table
Add a link
Reference in a new issue