mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-08 05:51:40 -07:00
Converter: added Apply super resolution? (y/n skip:n) : , Enhance details by applying DCSCN network.
refactorings
This commit is contained in:
parent
4683c362ac
commit
85c01e3b4a
12 changed files with 271 additions and 77 deletions
|
@ -19,7 +19,11 @@ class Converter(object):
|
|||
pass
|
||||
|
||||
#overridable
|
||||
def convert_face (self, img_bgr, img_face_landmarks, debug):
|
||||
def on_host_(self):
|
||||
pass
|
||||
|
||||
#overridable
|
||||
def cli_convert_face (self, img_bgr, img_face_landmarks, debug):
|
||||
#return float32 image
|
||||
#if debug , return tuple ( images of any size and channels, ...)
|
||||
return image
|
||||
|
|
|
@ -7,6 +7,9 @@ import cv2
|
|||
import numpy as np
|
||||
import imagelib
|
||||
from interact import interact as io
|
||||
from joblib import SubprocessFunctionCaller
|
||||
from utils.pickle_utils import AntiPickler
|
||||
|
||||
'''
|
||||
default_mode = {1:'overlay',
|
||||
2:'hist-match',
|
||||
|
@ -20,7 +23,7 @@ class ConverterMasked(Converter):
|
|||
#override
|
||||
def __init__(self, predictor_func,
|
||||
predictor_input_size=0,
|
||||
output_size=0,
|
||||
predictor_masked=True,
|
||||
face_type=FaceType.FULL,
|
||||
default_mode = 4,
|
||||
base_erode_mask_modifier = 0,
|
||||
|
@ -30,8 +33,12 @@ class ConverterMasked(Converter):
|
|||
clip_hborder_mask_per = 0):
|
||||
|
||||
super().__init__(predictor_func, Converter.TYPE_FACE)
|
||||
|
||||
predictor_func_host, predictor_func = SubprocessFunctionCaller.make_pair(predictor_func)
|
||||
self.predictor_func_host = AntiPickler(predictor_func_host)
|
||||
self.predictor_func = predictor_func
|
||||
self.predictor_masked = predictor_masked
|
||||
self.predictor_input_size = predictor_input_size
|
||||
self.output_size = output_size
|
||||
self.face_type = face_type
|
||||
self.clip_hborder_mask_per = clip_hborder_mask_per
|
||||
|
||||
|
@ -85,6 +92,7 @@ class ConverterMasked(Converter):
|
|||
|
||||
self.output_face_scale = np.clip ( 1.0 + io.input_int ("Choose output face scale modifier [-50..50] (skip:0) : ", 0)*0.01, 0.5, 1.5)
|
||||
self.color_transfer_mode = io.input_str ("Apply color transfer to predicted face? Choose mode ( rct/lct skip:None ) : ", None, ['rct','lct'])
|
||||
self.super_resolution = io.input_bool("Apply super resolution? (y/n skip:n) : ", False, help_message="Enhance details by applying DCSCN network.")
|
||||
|
||||
if self.mode != 'raw':
|
||||
self.final_image_color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
|
||||
|
@ -93,9 +101,19 @@ class ConverterMasked(Converter):
|
|||
io.log_info ("")
|
||||
self.over_res = 4 if self.suppress_seamless_jitter else 1
|
||||
|
||||
#override
|
||||
def dummy_predict(self):
|
||||
self.predictor_func ( np.zeros ( (self.predictor_input_size,self.predictor_input_size,4), dtype=np.float32 ) )
|
||||
if self.super_resolution:
|
||||
host_proc, dc_upscale = SubprocessFunctionCaller.make_pair( imagelib.DCSCN().upscale )
|
||||
self.dc_host = AntiPickler(host_proc)
|
||||
self.dc_upscale = dc_upscale
|
||||
else:
|
||||
self.dc_host = None
|
||||
|
||||
#overridable
|
||||
def on_host_tick(self):
|
||||
self.predictor_func_host.obj.process_messages()
|
||||
|
||||
if self.dc_host is not None:
|
||||
self.dc_host.obj.process_messages()
|
||||
|
||||
#overridable
|
||||
def on_cli_initialize(self):
|
||||
|
@ -103,7 +121,7 @@ class ConverterMasked(Converter):
|
|||
self.fan_seg = FANSegmentator(256, FaceType.toString(FaceType.FULL) )
|
||||
|
||||
#override
|
||||
def convert_face (self, img_bgr, img_face_landmarks, debug):
|
||||
def cli_convert_face (self, img_bgr, img_face_landmarks, debug):
|
||||
if self.over_res != 1:
|
||||
img_bgr = cv2.resize ( img_bgr, ( img_bgr.shape[1]*self.over_res, img_bgr.shape[0]*self.over_res ) )
|
||||
img_face_landmarks = img_face_landmarks*self.over_res
|
||||
|
@ -115,32 +133,52 @@ class ConverterMasked(Converter):
|
|||
|
||||
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
|
||||
|
||||
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type)
|
||||
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type, scale=self.output_face_scale)
|
||||
output_size = self.predictor_input_size
|
||||
if self.super_resolution:
|
||||
output_size *= 2
|
||||
|
||||
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
|
||||
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
|
||||
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=self.face_type)
|
||||
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=self.face_type, scale=self.output_face_scale)
|
||||
|
||||
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_LANCZOS4 )
|
||||
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_LANCZOS4 )
|
||||
|
||||
predictor_input_bgr = cv2.resize (dst_face_bgr, (self.predictor_input_size,self.predictor_input_size))
|
||||
predictor_input_mask_a_0 = cv2.resize (dst_face_mask_a_0, (self.predictor_input_size,self.predictor_input_size))
|
||||
predictor_input_mask_a = np.expand_dims (predictor_input_mask_a_0, -1)
|
||||
|
||||
predicted_bgra = self.predictor_func ( np.concatenate( (predictor_input_bgr, predictor_input_mask_a), -1) )
|
||||
if self.predictor_masked:
|
||||
prd_face_bgr, prd_face_mask_a_0 = self.predictor_func (predictor_input_bgr)
|
||||
prd_face_bgr = np.clip (prd_face_bgr, 0, 1.0 )
|
||||
prd_face_mask_a_0 = np.clip (prd_face_mask_a_0, 0.0, 1.0)
|
||||
else:
|
||||
predicted = self.predictor_func (predictor_input_bgr)
|
||||
prd_face_bgr = np.clip (predicted, 0, 1.0 )
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (self.predictor_input_size,self.predictor_input_size))
|
||||
|
||||
prd_face_bgr = np.clip (predicted_bgra[:,:,0:3], 0, 1.0 )
|
||||
prd_face_mask_a_0 = np.clip (predicted_bgra[:,:,3], 0.0, 1.0)
|
||||
if self.super_resolution:
|
||||
if debug:
|
||||
tmp = cv2.resize (prd_face_bgr, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
debugs += [ np.clip( cv2.warpAffine( tmp, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
prd_face_bgr = self.dc_upscale(prd_face_bgr)
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
if self.predictor_masked:
|
||||
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
else:
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
|
||||
if self.mask_mode == 2: #dst
|
||||
prd_face_mask_a_0 = predictor_input_mask_a_0
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
elif self.mask_mode == 3: #FAN-prd
|
||||
prd_face_bgr_256 = cv2.resize (prd_face_bgr, (256,256) )
|
||||
prd_face_bgr_256_mask = self.fan_seg.extract_from_bgr( np.expand_dims(prd_face_bgr_256,0) ) [0]
|
||||
prd_face_mask_a_0 = cv2.resize (prd_face_bgr_256_mask, (self.predictor_input_size, self.predictor_input_size))
|
||||
prd_face_bgr_256_mask = self.fan_seg.extract_from_bgr( prd_face_bgr_256[np.newaxis,...] ) [0]
|
||||
prd_face_mask_a_0 = cv2.resize (prd_face_bgr_256_mask, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
elif self.mask_mode == 4: #FAN-dst
|
||||
face_256_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, 256, face_type=FaceType.FULL)
|
||||
dst_face_256_bgr = cv2.warpAffine(img_bgr, face_256_mat, (256, 256), flags=cv2.INTER_LANCZOS4 )
|
||||
dst_face_256_mask = self.fan_seg.extract_from_bgr( np.expand_dims(dst_face_256_bgr,0) ) [0]
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_256_mask, (self.predictor_input_size, self.predictor_input_size))
|
||||
dst_face_256_mask = self.fan_seg.extract_from_bgr( dst_face_256_bgr[np.newaxis,...] ) [0]
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_256_mask, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
|
||||
prd_face_mask_a_0[ prd_face_mask_a_0 < 0.001 ] = 0.0
|
||||
|
||||
|
@ -333,7 +371,7 @@ class ConverterMasked(Converter):
|
|||
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (out_img*img_mask_blurry_aaa) , 0, 1.0 )
|
||||
|
||||
if self.mode == 'seamless-hist-match':
|
||||
out_face_bgr = cv2.warpAffine( out_img, face_mat, (self.output_size, self.output_size) )
|
||||
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
|
||||
new_out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, self.hist_match_threshold)
|
||||
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (new_out*img_mask_blurry_aaa) , 0, 1.0 )
|
||||
|
|
BIN
imagelib/DCSCN.h5
Normal file
BIN
imagelib/DCSCN.h5
Normal file
Binary file not shown.
164
imagelib/DCSCN.py
Normal file
164
imagelib/DCSCN.py
Normal file
|
@ -0,0 +1,164 @@
|
|||
import numpy as np
|
||||
import cv2
|
||||
from pathlib import Path
|
||||
from nnlib import nnlib
|
||||
from interact import interact as io
|
||||
|
||||
class DCSCN():
|
||||
def __init__(self):
|
||||
exec( nnlib.import_all(), locals(), globals() )
|
||||
|
||||
inp_x = KL.Input([None, None, 1])
|
||||
inp_x2 = KL.Input([None, None, 1])
|
||||
|
||||
x = inp_x
|
||||
layers_count = 12
|
||||
layers = []
|
||||
for i in range(1,layers_count+1):
|
||||
if i == 1:
|
||||
output_feature_num = 196
|
||||
else:
|
||||
x1 = (i-1) / float(layers_count - 1)
|
||||
y1 = x1 ** (1.0 / 1.5)
|
||||
output_feature_num = int((196 - 48) * (1 - y1) + 48)
|
||||
x = Conv2D(output_feature_num, kernel_size=3, strides=1, padding='same', name='CNN%d' % (i) ) (x)
|
||||
x = PReLU(shared_axes=[1,2], name='CNN%d_prelu' % (i) ) (x)
|
||||
layers.append(x)
|
||||
|
||||
x_concat = KL.Concatenate()(layers)
|
||||
|
||||
A1 = Conv2D(64, kernel_size=1, strides=1, padding='same', name='A1' ) (x_concat)
|
||||
A1 = PReLU(shared_axes=[1,2], name='A1_prelu') (A1)
|
||||
|
||||
B1 = Conv2D(32, kernel_size=1, strides=1, padding='same', name='B1' ) (x_concat)
|
||||
B1 = PReLU(shared_axes=[1,2], name='B1_prelu') (B1)
|
||||
|
||||
B2 = Conv2D(32, kernel_size=3, strides=1, padding='same', name='B2' ) (B1)
|
||||
B2 = PReLU(shared_axes=[1,2], name='B2_prelu') (B2)
|
||||
|
||||
x = KL.Concatenate()([B2,A1])
|
||||
x = Conv2D(96*4, kernel_size=3, strides=1, padding='same', name='Up_PS' )(x)
|
||||
x = PixelShuffler()(x)
|
||||
x = Conv2D(1, kernel_size=3, strides=1, padding='same', name='R_CNN1', use_bias=False )(x)
|
||||
x = KL.Add()([x, inp_x2])
|
||||
self.model = keras.models.Model ([inp_x, inp_x2], [x])
|
||||
self.model.load_weights ( Path(__file__).parent / 'DCSCN.h5' )
|
||||
|
||||
def upscale(self, img, is_bgr=True, is_float=True):
|
||||
if is_bgr:
|
||||
img = img[...,::-1]
|
||||
|
||||
if is_float:
|
||||
img = np.clip (img*255, 0, 255)
|
||||
|
||||
img_shape_len = len(img.shape)
|
||||
h, w = img.shape[:2]
|
||||
ch = img.shape[2] if len(img.shape) >= 3 else 1
|
||||
|
||||
nh, nw = h*2, w*2
|
||||
|
||||
img_x = self.convert_rgb_to_y(img)
|
||||
|
||||
img_bx = cv2.resize(img_x, (nh, nw), cv2.INTER_CUBIC)
|
||||
|
||||
ensemble = 8
|
||||
|
||||
output = np.zeros([nh,nw,1], dtype=np.float32)
|
||||
|
||||
for i in range(ensemble):
|
||||
x = np.reshape( self.flip(img_x, i), (1,h,w,1) )
|
||||
bx = np.reshape( self.flip(img_bx, i), (1,nh,nw,1) )
|
||||
y = self.model.predict([x,bx])[0]
|
||||
y = self.flip(y, i, invert=True)
|
||||
output += y
|
||||
|
||||
output /= ensemble
|
||||
|
||||
bimg = cv2.resize(img, (nh, nw), cv2.INTER_CUBIC)
|
||||
bimg_ycbcr = self.convert_rgb_to_ycbcr(bimg)
|
||||
|
||||
if ch > 1:
|
||||
output = self.convert_y_and_cbcr_to_rgb(output, bimg_ycbcr[:, :, 1:3])
|
||||
|
||||
if is_float:
|
||||
output = np.clip (output/255.0, 0, 1.0)
|
||||
|
||||
if is_bgr:
|
||||
output = output[...,::-1]
|
||||
|
||||
return output
|
||||
|
||||
def convert_rgb_to_y(self, image):
|
||||
if len(image.shape) <= 2 or image.shape[2] == 1:
|
||||
return image
|
||||
|
||||
xform = np.array([[65.738 / 256.0, 129.057 / 256.0, 25.064 / 256.0]], dtype=np.float32)
|
||||
y_image = image.dot(xform.T) + 16.0
|
||||
|
||||
return y_image
|
||||
|
||||
|
||||
def convert_rgb_to_ycbcr(self, image):
|
||||
if len(image.shape) <= 2 or image.shape[2] == 1:
|
||||
return image
|
||||
|
||||
xform = np.array(
|
||||
[[65.738 / 256.0, 129.057 / 256.0, 25.064 / 256.0],
|
||||
[- 37.945 / 256.0, - 74.494 / 256.0, 112.439 / 256.0],
|
||||
[112.439 / 256.0, - 94.154 / 256.0, - 18.285 / 256.0]], dtype=np.float32)
|
||||
|
||||
ycbcr_image = image.dot(xform.T)
|
||||
ycbcr_image[:, :, 0] += 16.0
|
||||
ycbcr_image[:, :, [1, 2]] += 128.0
|
||||
|
||||
return ycbcr_image
|
||||
|
||||
def convert_ycbcr_to_rgb(self,ycbcr_image):
|
||||
rgb_image = np.zeros([ycbcr_image.shape[0], ycbcr_image.shape[1], 3], dtype=np.float32)
|
||||
|
||||
rgb_image[:, :, 0] = ycbcr_image[:, :, 0] - 16.0
|
||||
rgb_image[:, :, [1, 2]] = ycbcr_image[:, :, [1, 2]] - 128.0
|
||||
xform = np.array(
|
||||
[[298.082 / 256.0, 0, 408.583 / 256.0],
|
||||
[298.082 / 256.0, -100.291 / 256.0, -208.120 / 256.0],
|
||||
[298.082 / 256.0, 516.412 / 256.0, 0]], dtype=np.float32)
|
||||
rgb_image = rgb_image.dot(xform.T)
|
||||
|
||||
return rgb_image
|
||||
|
||||
def convert_y_and_cbcr_to_rgb(self,y_image, cbcr_image):
|
||||
if len(y_image.shape) <= 2:
|
||||
y_image = y_image.reshape[y_image.shape[0], y_image.shape[1], 1]
|
||||
|
||||
if len(y_image.shape) == 3 and y_image.shape[2] == 3:
|
||||
y_image = y_image[:, :, 0:1]
|
||||
|
||||
ycbcr_image = np.zeros([y_image.shape[0], y_image.shape[1], 3], dtype=np.float32)
|
||||
ycbcr_image[:, :, 0] = y_image[:, :, 0]
|
||||
ycbcr_image[:, :, 1:3] = cbcr_image[:, :, 0:2]
|
||||
|
||||
return self.convert_ycbcr_to_rgb(ycbcr_image)
|
||||
|
||||
def flip(self, image, flip_type, invert=False):
|
||||
if flip_type == 0:
|
||||
return image
|
||||
elif flip_type == 1:
|
||||
return np.flipud(image)
|
||||
elif flip_type == 2:
|
||||
return np.fliplr(image)
|
||||
elif flip_type == 3:
|
||||
return np.flipud(np.fliplr(image))
|
||||
elif flip_type == 4:
|
||||
return np.rot90(image, 1 if invert is False else -1)
|
||||
elif flip_type == 5:
|
||||
return np.rot90(image, -1 if invert is False else 1)
|
||||
elif flip_type == 6:
|
||||
if invert is False:
|
||||
return np.flipud(np.rot90(image))
|
||||
else:
|
||||
return np.rot90(np.flipud(image), -1)
|
||||
elif flip_type == 7:
|
||||
if invert is False:
|
||||
return np.flipud(np.rot90(image, -1))
|
||||
else:
|
||||
return np.rot90(np.flipud(image), 1)
|
|
@ -17,3 +17,5 @@ from .reduce_colors import reduce_colors
|
|||
from .color_transfer import color_hist_match
|
||||
from .color_transfer import reinhard_color_transfer
|
||||
from .color_transfer import linear_color_transfer
|
||||
|
||||
from .DCSCN import DCSCN
|
|
@ -108,9 +108,9 @@ class ConvertSubprocessor(Subprocessor):
|
|||
self.log_info ( '\nConverting face_num [%d] in file [%s]' % (face_num, filename_path) )
|
||||
|
||||
if self.debug:
|
||||
debug_images += self.converter.convert_face(image, image_landmarks, self.debug)
|
||||
debug_images += self.converter.cli_convert_face(image, image_landmarks, self.debug)
|
||||
else:
|
||||
image = self.converter.convert_face(image, image_landmarks, self.debug)
|
||||
image = self.converter.cli_convert_face(image, image_landmarks, self.debug)
|
||||
|
||||
except Exception as e:
|
||||
e_str = traceback.format_exc()
|
||||
|
@ -140,9 +140,6 @@ class ConvertSubprocessor(Subprocessor):
|
|||
super().__init__('Converter', ConvertSubprocessor.Cli, 86400 if debug == True else 60)
|
||||
|
||||
self.converter = converter
|
||||
self.host_processor, self.cli_func = SubprocessFunctionCaller.make_pair ( self.converter.predictor_func )
|
||||
self.process_converter = self.converter.copy_and_set_predictor(self.cli_func)
|
||||
|
||||
self.input_data = self.input_path_image_paths = input_path_image_paths
|
||||
self.output_path = output_path
|
||||
self.alignments = alignments
|
||||
|
@ -158,7 +155,7 @@ class ConvertSubprocessor(Subprocessor):
|
|||
for i in r:
|
||||
yield 'CPU%d' % (i), {}, {'device_idx': i,
|
||||
'device_name': 'CPU%d' % (i),
|
||||
'converter' : self.process_converter,
|
||||
'converter' : self.converter,
|
||||
'output_dir' : str(self.output_path),
|
||||
'alignments' : self.alignments,
|
||||
'debug': self.debug,
|
||||
|
@ -202,7 +199,7 @@ class ConvertSubprocessor(Subprocessor):
|
|||
|
||||
#override
|
||||
def on_tick(self):
|
||||
self.host_processor.process_messages()
|
||||
self.converter.on_host_tick()
|
||||
|
||||
#override
|
||||
def get_result(self):
|
||||
|
@ -235,7 +232,6 @@ def main (args, device_args):
|
|||
import models
|
||||
model = models.import_model( args['model_name'] )(model_path, device_args=device_args)
|
||||
converter = model.get_converter()
|
||||
converter.dummy_predict()
|
||||
|
||||
alignments = None
|
||||
|
||||
|
|
|
@ -33,12 +33,16 @@ class Model(ModelBase):
|
|||
]
|
||||
self.load_weights_safe(weights_to_load)
|
||||
|
||||
self.autoencoder_src = Model([ae_input_layer,mask_layer], self.decoder_src(self.encoder(ae_input_layer)))
|
||||
self.autoencoder_dst = Model([ae_input_layer,mask_layer], self.decoder_dst(self.encoder(ae_input_layer)))
|
||||
rec_src = self.decoder_src(self.encoder(ae_input_layer))
|
||||
rec_dst = self.decoder_dst(self.encoder(ae_input_layer))
|
||||
self.autoencoder_src = Model([ae_input_layer,mask_layer], rec_src)
|
||||
self.autoencoder_dst = Model([ae_input_layer,mask_layer], rec_dst)
|
||||
|
||||
self.autoencoder_src.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMSEMaskLoss(mask_layer, is_mse=self.options['pixel_loss']), 'mse'] )
|
||||
self.autoencoder_dst.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMSEMaskLoss(mask_layer, is_mse=self.options['pixel_loss']), 'mse'] )
|
||||
|
||||
self.convert = K.function([ae_input_layer], rec_src)
|
||||
|
||||
if self.is_training_mode:
|
||||
f = SampleProcessor.TypeFlags
|
||||
self.set_training_data_generators ([
|
||||
|
@ -103,21 +107,14 @@ class Model(ModelBase):
|
|||
return [ ('DF', np.concatenate ( st, axis=0 ) ) ]
|
||||
|
||||
def predictor_func (self, face):
|
||||
|
||||
face_128_bgr = face[...,0:3]
|
||||
face_128_mask = np.expand_dims(face[...,3],-1)
|
||||
|
||||
x, mx = self.autoencoder_src.predict ( [ np.expand_dims(face_128_bgr,0), np.expand_dims(face_128_mask,0) ] )
|
||||
x, mx = x[0], mx[0]
|
||||
|
||||
return np.concatenate ( (x,mx), -1 )
|
||||
x, mx = self.convert ( [ face[np.newaxis,...] ] )
|
||||
return x[0], mx[0][...,0]
|
||||
|
||||
#override
|
||||
def get_converter(self):
|
||||
from converters import ConverterMasked
|
||||
return ConverterMasked(self.predictor_func,
|
||||
predictor_input_size=128,
|
||||
output_size=128,
|
||||
face_type=FaceType.FULL,
|
||||
base_erode_mask_modifier=30,
|
||||
base_blur_mask_modifier=0)
|
||||
|
|
|
@ -116,20 +116,14 @@ class Model(ModelBase):
|
|||
return [ ('H128', np.concatenate ( st, axis=0 ) ) ]
|
||||
|
||||
def predictor_func (self, face):
|
||||
face_128_bgr = face[...,0:3]
|
||||
face_128_mask = np.expand_dims(face[...,3],-1)
|
||||
|
||||
x, mx = self.src_view ( [ np.expand_dims(face_128_bgr,0) ] )
|
||||
x, mx = x[0], mx[0]
|
||||
|
||||
return np.concatenate ( (x,mx), -1 )
|
||||
x, mx = self.src_view ( [ face[np.newaxis,...] ] )
|
||||
return x[0], mx[0][...,0]
|
||||
|
||||
#override
|
||||
def get_converter(self):
|
||||
from converters import ConverterMasked
|
||||
return ConverterMasked(self.predictor_func,
|
||||
predictor_input_size=128,
|
||||
output_size=128,
|
||||
face_type=FaceType.HALF,
|
||||
base_erode_mask_modifier=100,
|
||||
base_blur_mask_modifier=100)
|
||||
|
|
|
@ -117,21 +117,14 @@ class Model(ModelBase):
|
|||
return [ ('H64', np.concatenate ( st, axis=0 ) ) ]
|
||||
|
||||
def predictor_func (self, face):
|
||||
|
||||
face_64_bgr = face[...,0:3]
|
||||
face_64_mask = np.expand_dims(face[...,3],-1)
|
||||
|
||||
x, mx = self.src_view ( [ np.expand_dims(face_64_bgr,0) ] )
|
||||
x, mx = x[0], mx[0]
|
||||
|
||||
return np.concatenate ( (x,mx), -1 )
|
||||
x, mx = self.src_view ( [ face[np.newaxis,...] ] )
|
||||
return x[0], mx[0][...,0]
|
||||
|
||||
#override
|
||||
def get_converter(self):
|
||||
from converters import ConverterMasked
|
||||
return ConverterMasked(self.predictor_func,
|
||||
predictor_input_size=64,
|
||||
output_size=64,
|
||||
face_type=FaceType.HALF,
|
||||
base_erode_mask_modifier=100,
|
||||
base_blur_mask_modifier=100)
|
||||
|
|
|
@ -37,12 +37,17 @@ class Model(ModelBase):
|
|||
code = self.encoder(ae_input_layer)
|
||||
AB = self.inter_AB(code)
|
||||
B = self.inter_B(code)
|
||||
self.autoencoder_src = Model([ae_input_layer,mask_layer], self.decoder(Concatenate()([AB, AB])) )
|
||||
self.autoencoder_dst = Model([ae_input_layer,mask_layer], self.decoder(Concatenate()([B, AB])) )
|
||||
rec_src = self.decoder(Concatenate()([AB, AB]))
|
||||
rec_dst = self.decoder(Concatenate()([B, AB]))
|
||||
self.autoencoder_src = Model([ae_input_layer,mask_layer], rec_src )
|
||||
self.autoencoder_dst = Model([ae_input_layer,mask_layer], rec_dst )
|
||||
|
||||
self.autoencoder_src.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMSEMaskLoss(mask_layer, is_mse=self.options['pixel_loss']), 'mse'] )
|
||||
self.autoencoder_dst.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMSEMaskLoss(mask_layer, is_mse=self.options['pixel_loss']), 'mse'] )
|
||||
|
||||
self.convert = K.function([ae_input_layer],rec_src)
|
||||
|
||||
|
||||
if self.is_training_mode:
|
||||
f = SampleProcessor.TypeFlags
|
||||
self.set_training_data_generators ([
|
||||
|
@ -111,21 +116,14 @@ class Model(ModelBase):
|
|||
return [ ('LIAEF128', np.concatenate ( st, axis=0 ) ) ]
|
||||
|
||||
def predictor_func (self, face):
|
||||
|
||||
face_128_bgr = face[...,0:3]
|
||||
face_128_mask = np.expand_dims(face[...,3],-1)
|
||||
|
||||
x, mx = self.autoencoder_src.predict ( [ np.expand_dims(face_128_bgr,0), np.expand_dims(face_128_mask,0) ] )
|
||||
x, mx = x[0], mx[0]
|
||||
|
||||
return np.concatenate ( (x,mx), -1 )
|
||||
x, mx = self.convert ( [ face[np.newaxis,...] ] )
|
||||
return x[0], mx[0][...,0]
|
||||
|
||||
#override
|
||||
def get_converter(self):
|
||||
from converters import ConverterMasked
|
||||
return ConverterMasked(self.predictor_func,
|
||||
predictor_input_size=128,
|
||||
output_size=128,
|
||||
face_type=FaceType.FULL,
|
||||
base_erode_mask_modifier=30,
|
||||
base_blur_mask_modifier=0)
|
||||
|
|
|
@ -406,13 +406,12 @@ class SAEModel(ModelBase):
|
|||
return [ ('SAE', np.concatenate (st, axis=0 )), ]
|
||||
|
||||
def predictor_func (self, face):
|
||||
|
||||
prd = [ x[0] for x in self.AE_convert ( [ face[np.newaxis,:,:,0:3] ] ) ]
|
||||
|
||||
if not self.options['learn_mask']:
|
||||
prd += [ face[...,3:4] ]
|
||||
|
||||
return np.concatenate ( prd, -1 )
|
||||
if self.options['learn_mask']:
|
||||
bgr, mask = self.AE_convert ([face[np.newaxis,...]])
|
||||
return bgr[0], mask[0][...,0]
|
||||
else:
|
||||
bgr, = self.AE_convert ([face[np.newaxis,...]])
|
||||
return bgr[0]
|
||||
|
||||
#override
|
||||
def get_converter(self):
|
||||
|
@ -428,7 +427,7 @@ class SAEModel(ModelBase):
|
|||
from converters import ConverterMasked
|
||||
return ConverterMasked(self.predictor_func,
|
||||
predictor_input_size=self.options['resolution'],
|
||||
output_size=self.options['resolution'],
|
||||
predictor_masked=self.options['learn_mask'],
|
||||
face_type=face_type,
|
||||
default_mode = 1 if self.options['face_style_power'] or self.options['bg_style_power'] else 4,
|
||||
base_erode_mask_modifier=base_erode_mask_modifier,
|
||||
|
|
9
utils/pickle_utils.py
Normal file
9
utils/pickle_utils.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
class AntiPickler():
|
||||
def __init__(self, obj):
|
||||
self.obj = obj
|
||||
|
||||
def __getstate__(self):
|
||||
return dict()
|
||||
|
||||
def __setstate__(self, d):
|
||||
self.__dict__.update(d)
|
Loading…
Add table
Add a link
Reference in a new issue