mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 21:12:07 -07:00
Converter: added Apply super resolution? (y/n skip:n) : , Enhance details by applying DCSCN network.
refactorings
This commit is contained in:
parent
4683c362ac
commit
85c01e3b4a
12 changed files with 271 additions and 77 deletions
|
@ -406,13 +406,12 @@ class SAEModel(ModelBase):
|
|||
return [ ('SAE', np.concatenate (st, axis=0 )), ]
|
||||
|
||||
def predictor_func (self, face):
|
||||
|
||||
prd = [ x[0] for x in self.AE_convert ( [ face[np.newaxis,:,:,0:3] ] ) ]
|
||||
|
||||
if not self.options['learn_mask']:
|
||||
prd += [ face[...,3:4] ]
|
||||
|
||||
return np.concatenate ( prd, -1 )
|
||||
if self.options['learn_mask']:
|
||||
bgr, mask = self.AE_convert ([face[np.newaxis,...]])
|
||||
return bgr[0], mask[0][...,0]
|
||||
else:
|
||||
bgr, = self.AE_convert ([face[np.newaxis,...]])
|
||||
return bgr[0]
|
||||
|
||||
#override
|
||||
def get_converter(self):
|
||||
|
@ -428,7 +427,7 @@ class SAEModel(ModelBase):
|
|||
from converters import ConverterMasked
|
||||
return ConverterMasked(self.predictor_func,
|
||||
predictor_input_size=self.options['resolution'],
|
||||
output_size=self.options['resolution'],
|
||||
predictor_masked=self.options['learn_mask'],
|
||||
face_type=face_type,
|
||||
default_mode = 1 if self.options['face_style_power'] or self.options['bg_style_power'] else 4,
|
||||
base_erode_mask_modifier=base_erode_mask_modifier,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue