Converter: added Apply super resolution? (y/n skip:n) : , Enhance details by applying DCSCN network.

refactorings
This commit is contained in:
iperov 2019-03-28 21:50:27 +04:00
parent 4683c362ac
commit 85c01e3b4a
12 changed files with 271 additions and 77 deletions

View file

@ -117,21 +117,14 @@ class Model(ModelBase):
return [ ('H64', np.concatenate ( st, axis=0 ) ) ]
def predictor_func (self, face):
face_64_bgr = face[...,0:3]
face_64_mask = np.expand_dims(face[...,3],-1)
x, mx = self.src_view ( [ np.expand_dims(face_64_bgr,0) ] )
x, mx = x[0], mx[0]
return np.concatenate ( (x,mx), -1 )
x, mx = self.src_view ( [ face[np.newaxis,...] ] )
return x[0], mx[0][...,0]
#override
def get_converter(self):
from converters import ConverterMasked
return ConverterMasked(self.predictor_func,
predictor_input_size=64,
output_size=64,
face_type=FaceType.HALF,
base_erode_mask_modifier=100,
base_blur_mask_modifier=100)