This commit is contained in:
Colombo 2019-11-24 19:51:07 +04:00
parent 1bfd65abe5
commit 77b390c04b
4 changed files with 150 additions and 25 deletions

View file

@ -92,6 +92,7 @@ Model = keras.models.Model
Adam = nnlib.Adam Adam = nnlib.Adam
RMSprop = nnlib.RMSprop RMSprop = nnlib.RMSprop
LookaheadOptimizer = nnlib.LookaheadOptimizer
modelify = nnlib.modelify modelify = nnlib.modelify
gaussian_blur = nnlib.gaussian_blur gaussian_blur = nnlib.gaussian_blur
@ -936,7 +937,85 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
base_config = super(Adam, self).get_config() base_config = super(Adam, self).get_config()
return dict(list(base_config.items()) + list(config.items())) return dict(list(base_config.items()) + list(config.items()))
nnlib.Adam = Adam nnlib.Adam = Adam
class LookaheadOptimizer(keras.optimizers.Optimizer):
def __init__(self, optimizer, sync_period=5, slow_step=0.5, tf_cpu_mode=0, **kwargs):
super(LookaheadOptimizer, self).__init__(**kwargs)
self.optimizer = optimizer
self.tf_cpu_mode = tf_cpu_mode
with K.name_scope(self.__class__.__name__):
self.sync_period = K.variable(sync_period, dtype='int64', name='sync_period')
self.slow_step = K.variable(slow_step, name='slow_step')
@property
def lr(self):
return self.optimizer.lr
@lr.setter
def lr(self, lr):
self.optimizer.lr = lr
@property
def learning_rate(self):
return self.optimizer.learning_rate
@learning_rate.setter
def learning_rate(self, learning_rate):
self.optimizer.learning_rate = learning_rate
@property
def iterations(self):
return self.optimizer.iterations
def get_updates(self, loss, params):
sync_cond = K.equal((self.iterations + 1) // self.sync_period * self.sync_period, (self.iterations + 1))
e = K.tf.device("/cpu:0") if self.tf_cpu_mode > 0 else None
if e: e.__enter__()
slow_params = [K.variable(K.get_value(p), name='sp_{}'.format(i)) for i, p in enumerate(params)]
if e: e.__exit__(None, None, None)
self.updates = self.optimizer.get_updates(loss, params)
slow_updates = []
for p, sp in zip(params, slow_params):
e = K.tf.device("/cpu:0") if self.tf_cpu_mode == 2 else None
if e: e.__enter__()
sp_t = sp + self.slow_step * (p - sp)
if e: e.__exit__(None, None, None)
slow_updates.append(K.update(sp, K.switch(
sync_cond,
sp_t,
sp,
)))
slow_updates.append(K.update_add(p, K.switch(
sync_cond,
sp_t - p,
K.zeros_like(p),
)))
self.updates += slow_updates
self.weights = self.optimizer.weights + slow_params
return self.updates
def get_config(self):
config = {
'optimizer': keras.optimizers.serialize(self.optimizer),
'sync_period': int(K.get_value(self.sync_period)),
'slow_step': float(K.get_value(self.slow_step)),
}
base_config = super(LookaheadOptimizer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@classmethod
def from_config(cls, config):
optimizer = keras.optimizers.deserialize(config.pop('optimizer'))
return cls(optimizer, **config)
nnlib.LookaheadOptimizer = LookaheadOptimizer
class DenseMaxout(keras.layers.Layer): class DenseMaxout(keras.layers.Layer):
"""A dense maxout layer. """A dense maxout layer.
A `MaxoutDense` layer takes the element-wise maximum of A `MaxoutDense` layer takes the element-wise maximum of

View file

@ -24,8 +24,8 @@ class SampleGeneratorFace(SampleGeneratorBase):
random_ct_samples_path=None, random_ct_samples_path=None,
sample_process_options=SampleProcessor.Options(), sample_process_options=SampleProcessor.Options(),
output_sample_types=[], output_sample_types=[],
person_id_mode=False,
add_sample_idx=False, add_sample_idx=False,
use_caching=False,
generators_count=2, generators_count=2,
generators_random_seed=None, generators_random_seed=None,
**kwargs): **kwargs):
@ -34,7 +34,6 @@ class SampleGeneratorFace(SampleGeneratorBase):
self.sample_process_options = sample_process_options self.sample_process_options = sample_process_options
self.output_sample_types = output_sample_types self.output_sample_types = output_sample_types
self.add_sample_idx = add_sample_idx self.add_sample_idx = add_sample_idx
self.person_id_mode = person_id_mode
if sort_by_yaw_target_samples_path is not None: if sort_by_yaw_target_samples_path is not None:
self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET
@ -48,7 +47,7 @@ class SampleGeneratorFace(SampleGeneratorBase):
self.generators_random_seed = generators_random_seed self.generators_random_seed = generators_random_seed
samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path, person_id_mode=person_id_mode) samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path, use_caching=use_caching)
np.random.shuffle(samples) np.random.shuffle(samples)
self.samples_len = len(samples) self.samples_len = len(samples)
@ -149,19 +148,12 @@ class SampleGeneratorFace(SampleGeneratorBase):
if self.add_sample_idx: if self.add_sample_idx:
batches += [ [] ] batches += [ [] ]
i_sample_idx = len(batches)-1 i_sample_idx = len(batches)-1
if self.person_id_mode:
batches += [ [] ]
i_person_id = len(batches)-1
for i in range(len(x)): for i in range(len(x)):
batches[i].append ( x[i] ) batches[i].append ( x[i] )
if self.add_sample_idx: if self.add_sample_idx:
batches[i_sample_idx].append (idx) batches[i_sample_idx].append (idx)
if self.person_id_mode:
batches[i_person_id].append ( np.array([sample.person_id]) )
break break

View file

@ -22,8 +22,9 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
sample_process_options=SampleProcessor.Options(), sample_process_options=SampleProcessor.Options(),
output_sample_types=[], output_sample_types=[],
person_id_mode=1, person_id_mode=1,
use_caching=False,
generators_count=2, generators_count=2,
generators_random_seed=None, generators_random_seed=None,
**kwargs): **kwargs):
super().__init__(samples_path, debug, batch_size) super().__init__(samples_path, debug, batch_size)
@ -35,15 +36,28 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
raise ValueError("len(generators_random_seed) != generators_count") raise ValueError("len(generators_random_seed) != generators_count")
self.generators_random_seed = generators_random_seed self.generators_random_seed = generators_random_seed
samples = SampleLoader.load (SampleType.FACE, self.samples_path, person_id_mode=True) samples = SampleLoader.load (SampleType.FACE, self.samples_path, person_id_mode=True, use_caching=use_caching)
if person_id_mode==1: if person_id_mode==1:
new_samples = []
for s in samples:
new_samples += s
samples = new_samples
np.random.shuffle(samples) np.random.shuffle(samples)
new_samples = []
while len(samples) > 0:
for i in range( len(samples)-1, -1, -1):
sample = samples[i]
if len(sample) > 0:
new_samples.append(sample.pop(0))
if len(sample) == 0:
samples.pop(i)
samples = new_samples
#new_samples = []
#for s in samples:
# new_samples += s
#samples = new_samples
#np.random.shuffle(samples)
self.samples_len = len(samples) self.samples_len = len(samples)
if self.samples_len == 0: if self.samples_len == 0:
@ -116,7 +130,7 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
if self.person_id_mode==1: if self.person_id_mode==1:
if len(shuffle_idxs) == 0: if len(shuffle_idxs) == 0:
shuffle_idxs = samples_idxs.copy() shuffle_idxs = samples_idxs.copy()
np.random.shuffle(shuffle_idxs) #np.random.shuffle(shuffle_idxs)
idx = shuffle_idxs.pop() idx = shuffle_idxs.pop()
sample = samples[ idx ] sample = samples[ idx ]

View file

@ -1,4 +1,5 @@
import operator import operator
import pickle
import traceback import traceback
from enum import IntEnum from enum import IntEnum
from pathlib import Path from pathlib import Path
@ -23,7 +24,7 @@ class SampleLoader:
return len ( Path_utils.get_all_dir_names(samples_path) ) return len ( Path_utils.get_all_dir_names(samples_path) )
@staticmethod @staticmethod
def load(sample_type, samples_path, target_samples_path=None, person_id_mode=False): def load(sample_type, samples_path, target_samples_path=None, person_id_mode=True, use_caching=False):
cache = SampleLoader.cache cache = SampleLoader.cache
if str(samples_path) not in cache.keys(): if str(samples_path) not in cache.keys():
@ -36,15 +37,54 @@ class SampleLoader:
datas[sample_type] = [ Sample(filename=filename) for filename in io.progress_bar_generator( Path_utils.get_image_paths(samples_path), "Loading") ] datas[sample_type] = [ Sample(filename=filename) for filename in io.progress_bar_generator( Path_utils.get_image_paths(samples_path), "Loading") ]
elif sample_type == SampleType.FACE: elif sample_type == SampleType.FACE:
if datas[sample_type] is None: if datas[sample_type] is None:
if person_id_mode:
dir_names = Path_utils.get_all_dir_names(samples_path) if not use_caching:
all_samples = []
for i, dir_name in io.progress_bar_generator( [*enumerate(dir_names)] , "Loading"):
all_samples += SampleLoader.upgradeToFaceSamples( [ Sample(filename=filename, person_id=i) for filename in Path_utils.get_image_paths( samples_path / dir_name ) ], silent=True )
datas[sample_type] = all_samples
else:
datas[sample_type] = SampleLoader.upgradeToFaceSamples( [ Sample(filename=filename) for filename in Path_utils.get_image_paths(samples_path) ] ) datas[sample_type] = SampleLoader.upgradeToFaceSamples( [ Sample(filename=filename) for filename in Path_utils.get_image_paths(samples_path) ] )
else:
samples_dat = samples_path / 'samples.dat'
if samples_dat.exists():
io.log_info (f"Using saved samples info from '{samples_dat}' ")
all_samples = pickle.loads(samples_dat.read_bytes())
if person_id_mode:
for samples in all_samples:
for sample in samples:
sample.filename = str( samples_path / Path(sample.filename) )
else:
for sample in all_samples:
sample.filename = str( samples_path / Path(sample.filename) )
datas[sample_type] = all_samples
else:
if person_id_mode:
dir_names = Path_utils.get_all_dir_names(samples_path)
all_samples = []
for i, dir_name in io.progress_bar_generator( [*enumerate(dir_names)] , "Loading"):
all_samples += [ SampleLoader.upgradeToFaceSamples( [ Sample(filename=filename, person_id=i) for filename in Path_utils.get_image_paths( samples_path / dir_name ) ], silent=True ) ]
datas[sample_type] = all_samples
else:
datas[sample_type] = all_samples = SampleLoader.upgradeToFaceSamples( [ Sample(filename=filename) for filename in Path_utils.get_image_paths(samples_path) ] )
if person_id_mode:
for samples in all_samples:
for sample in samples:
sample.filename = str(Path(sample.filename).relative_to(samples_path))
else:
for sample in all_samples:
sample.filename = str(Path(sample.filename).relative_to(samples_path))
samples_dat.write_bytes (pickle.dumps(all_samples))
if person_id_mode:
for samples in all_samples:
for sample in samples:
sample.filename = str( samples_path / Path(sample.filename) )
else:
for sample in all_samples:
sample.filename = str( samples_path / Path(sample.filename) )
elif sample_type == SampleType.FACE_TEMPORAL_SORTED: elif sample_type == SampleType.FACE_TEMPORAL_SORTED:
if datas[sample_type] is None: if datas[sample_type] is None:
datas[sample_type] = SampleLoader.upgradeToFaceTemporalSortedSamples( SampleLoader.load(SampleType.FACE, samples_path) ) datas[sample_type] = SampleLoader.upgradeToFaceTemporalSortedSamples( SampleLoader.load(SampleType.FACE, samples_path) )