mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 13:02:15 -07:00
1
This commit is contained in:
parent
1bfd65abe5
commit
77b390c04b
4 changed files with 150 additions and 25 deletions
|
@ -24,8 +24,8 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
random_ct_samples_path=None,
|
||||
sample_process_options=SampleProcessor.Options(),
|
||||
output_sample_types=[],
|
||||
person_id_mode=False,
|
||||
add_sample_idx=False,
|
||||
use_caching=False,
|
||||
generators_count=2,
|
||||
generators_random_seed=None,
|
||||
**kwargs):
|
||||
|
@ -34,7 +34,6 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
self.sample_process_options = sample_process_options
|
||||
self.output_sample_types = output_sample_types
|
||||
self.add_sample_idx = add_sample_idx
|
||||
self.person_id_mode = person_id_mode
|
||||
|
||||
if sort_by_yaw_target_samples_path is not None:
|
||||
self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET
|
||||
|
@ -48,7 +47,7 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
|
||||
self.generators_random_seed = generators_random_seed
|
||||
|
||||
samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path, person_id_mode=person_id_mode)
|
||||
samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path, use_caching=use_caching)
|
||||
np.random.shuffle(samples)
|
||||
self.samples_len = len(samples)
|
||||
|
||||
|
@ -149,19 +148,12 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
if self.add_sample_idx:
|
||||
batches += [ [] ]
|
||||
i_sample_idx = len(batches)-1
|
||||
|
||||
if self.person_id_mode:
|
||||
batches += [ [] ]
|
||||
i_person_id = len(batches)-1
|
||||
|
||||
for i in range(len(x)):
|
||||
batches[i].append ( x[i] )
|
||||
|
||||
if self.add_sample_idx:
|
||||
batches[i_sample_idx].append (idx)
|
||||
|
||||
if self.person_id_mode:
|
||||
batches[i_person_id].append ( np.array([sample.person_id]) )
|
||||
|
||||
break
|
||||
|
||||
|
|
|
@ -22,8 +22,9 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
|
|||
sample_process_options=SampleProcessor.Options(),
|
||||
output_sample_types=[],
|
||||
person_id_mode=1,
|
||||
use_caching=False,
|
||||
generators_count=2,
|
||||
generators_random_seed=None,
|
||||
generators_random_seed=None,
|
||||
**kwargs):
|
||||
|
||||
super().__init__(samples_path, debug, batch_size)
|
||||
|
@ -35,15 +36,28 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
|
|||
raise ValueError("len(generators_random_seed) != generators_count")
|
||||
self.generators_random_seed = generators_random_seed
|
||||
|
||||
samples = SampleLoader.load (SampleType.FACE, self.samples_path, person_id_mode=True)
|
||||
samples = SampleLoader.load (SampleType.FACE, self.samples_path, person_id_mode=True, use_caching=use_caching)
|
||||
|
||||
if person_id_mode==1:
|
||||
new_samples = []
|
||||
for s in samples:
|
||||
new_samples += s
|
||||
samples = new_samples
|
||||
np.random.shuffle(samples)
|
||||
|
||||
new_samples = []
|
||||
while len(samples) > 0:
|
||||
for i in range( len(samples)-1, -1, -1):
|
||||
sample = samples[i]
|
||||
|
||||
if len(sample) > 0:
|
||||
new_samples.append(sample.pop(0))
|
||||
|
||||
if len(sample) == 0:
|
||||
samples.pop(i)
|
||||
samples = new_samples
|
||||
#new_samples = []
|
||||
#for s in samples:
|
||||
# new_samples += s
|
||||
#samples = new_samples
|
||||
#np.random.shuffle(samples)
|
||||
|
||||
self.samples_len = len(samples)
|
||||
|
||||
if self.samples_len == 0:
|
||||
|
@ -116,7 +130,7 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
|
|||
if self.person_id_mode==1:
|
||||
if len(shuffle_idxs) == 0:
|
||||
shuffle_idxs = samples_idxs.copy()
|
||||
np.random.shuffle(shuffle_idxs)
|
||||
#np.random.shuffle(shuffle_idxs)
|
||||
|
||||
idx = shuffle_idxs.pop()
|
||||
sample = samples[ idx ]
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import operator
|
||||
import pickle
|
||||
import traceback
|
||||
from enum import IntEnum
|
||||
from pathlib import Path
|
||||
|
@ -23,7 +24,7 @@ class SampleLoader:
|
|||
return len ( Path_utils.get_all_dir_names(samples_path) )
|
||||
|
||||
@staticmethod
|
||||
def load(sample_type, samples_path, target_samples_path=None, person_id_mode=False):
|
||||
def load(sample_type, samples_path, target_samples_path=None, person_id_mode=True, use_caching=False):
|
||||
cache = SampleLoader.cache
|
||||
|
||||
if str(samples_path) not in cache.keys():
|
||||
|
@ -36,15 +37,54 @@ class SampleLoader:
|
|||
datas[sample_type] = [ Sample(filename=filename) for filename in io.progress_bar_generator( Path_utils.get_image_paths(samples_path), "Loading") ]
|
||||
elif sample_type == SampleType.FACE:
|
||||
if datas[sample_type] is None:
|
||||
if person_id_mode:
|
||||
dir_names = Path_utils.get_all_dir_names(samples_path)
|
||||
all_samples = []
|
||||
for i, dir_name in io.progress_bar_generator( [*enumerate(dir_names)] , "Loading"):
|
||||
all_samples += SampleLoader.upgradeToFaceSamples( [ Sample(filename=filename, person_id=i) for filename in Path_utils.get_image_paths( samples_path / dir_name ) ], silent=True )
|
||||
datas[sample_type] = all_samples
|
||||
else:
|
||||
|
||||
if not use_caching:
|
||||
datas[sample_type] = SampleLoader.upgradeToFaceSamples( [ Sample(filename=filename) for filename in Path_utils.get_image_paths(samples_path) ] )
|
||||
else:
|
||||
samples_dat = samples_path / 'samples.dat'
|
||||
if samples_dat.exists():
|
||||
io.log_info (f"Using saved samples info from '{samples_dat}' ")
|
||||
|
||||
all_samples = pickle.loads(samples_dat.read_bytes())
|
||||
|
||||
if person_id_mode:
|
||||
for samples in all_samples:
|
||||
for sample in samples:
|
||||
sample.filename = str( samples_path / Path(sample.filename) )
|
||||
else:
|
||||
for sample in all_samples:
|
||||
sample.filename = str( samples_path / Path(sample.filename) )
|
||||
|
||||
datas[sample_type] = all_samples
|
||||
|
||||
else:
|
||||
if person_id_mode:
|
||||
dir_names = Path_utils.get_all_dir_names(samples_path)
|
||||
all_samples = []
|
||||
for i, dir_name in io.progress_bar_generator( [*enumerate(dir_names)] , "Loading"):
|
||||
all_samples += [ SampleLoader.upgradeToFaceSamples( [ Sample(filename=filename, person_id=i) for filename in Path_utils.get_image_paths( samples_path / dir_name ) ], silent=True ) ]
|
||||
datas[sample_type] = all_samples
|
||||
else:
|
||||
datas[sample_type] = all_samples = SampleLoader.upgradeToFaceSamples( [ Sample(filename=filename) for filename in Path_utils.get_image_paths(samples_path) ] )
|
||||
|
||||
if person_id_mode:
|
||||
for samples in all_samples:
|
||||
for sample in samples:
|
||||
sample.filename = str(Path(sample.filename).relative_to(samples_path))
|
||||
else:
|
||||
for sample in all_samples:
|
||||
sample.filename = str(Path(sample.filename).relative_to(samples_path))
|
||||
|
||||
samples_dat.write_bytes (pickle.dumps(all_samples))
|
||||
|
||||
if person_id_mode:
|
||||
for samples in all_samples:
|
||||
for sample in samples:
|
||||
sample.filename = str( samples_path / Path(sample.filename) )
|
||||
else:
|
||||
for sample in all_samples:
|
||||
sample.filename = str( samples_path / Path(sample.filename) )
|
||||
|
||||
elif sample_type == SampleType.FACE_TEMPORAL_SORTED:
|
||||
if datas[sample_type] is None:
|
||||
datas[sample_type] = SampleLoader.upgradeToFaceTemporalSortedSamples( SampleLoader.load(SampleType.FACE, samples_path) )
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue