diff --git a/CHANGELOG.md b/CHANGELOG.md index 5d921de..cc0583d 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -8,7 +8,11 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 ### In Progress - [Freezeable layers (encoder/decoder/etc.)](https://github.com/faceshiftlabs/DeepFaceLab/tree/feature/freezable-weights) -## [1.4.1] - 2020-03-24 +## [1.4.2] - 2020-03-26 +### Fixed +- Fixes bug in background power with MS-SSIM, that misattributed loss from dst to src + +## [1.4.1] - 2020-03-25 ### Fixed - When both Background Power and MS-SSIM were enabled, the src and dst losses were being overwritten with the "background power" losses. Fixed so "background power" losses are properly added with the total losses. @@ -69,7 +73,8 @@ This should help with rough areas directly next to the mask - Reset stale master branch to [seranus/DeepFaceLab](https://github.com/seranus/DeepFaceLab), 21 commits ahead of [iperov/DeepFaceLab](https://github.com/iperov/DeepFaceLab) ([compare](https://github.com/iperov/DeepFaceLab/compare/4818183...seranus:3f5ae05)) -[Unreleased]: https://github.com/olivierlacan/keep-a-changelog/compare/v1.4.1...HEAD +[Unreleased]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.4.2...HEAD +[1.4.2]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.4.1...v1.4.2 [1.4.1]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.4.0...v1.4.1 [1.4.0]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.3.0...v1.4.0 [1.3.0]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.2.1...v1.3.0 diff --git a/models/Model_SAEHD/Model.py b/models/Model_SAEHD/Model.py index c2431c4..0d70461 100644 --- a/models/Model_SAEHD/Model.py +++ b/models/Model_SAEHD/Model.py @@ -518,7 +518,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... if self.options['background_power'] > 0: bg_factor = self.options['background_power'] if self.options['ms_ssim_loss']: - gpu_src_loss += bg_factor * 10 * nn.MsSsim(resolution)(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0) + gpu_dst_loss += bg_factor * 10 * nn.MsSsim(resolution)(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0) else: if resolution < 256: gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])