mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 13:32:09 -07:00
converter:
fixed crashes removed useless 'ebs' color transfer changed keys for color degrade added image degrade via denoise - same as denoise extracted data_dst.bat , but you can control this option directly in the interactive converter added image degrade via bicubic downscale and upscale SAEHD: default ae_dims for df now 256.
This commit is contained in:
parent
374d8c2388
commit
770c70d778
8 changed files with 274 additions and 57 deletions
|
@ -8,10 +8,8 @@ from facelib import FaceType, LandmarksProcessor
|
||||||
from interact import interact as io
|
from interact import interact as io
|
||||||
from utils.cv2_utils import *
|
from utils.cv2_utils import *
|
||||||
|
|
||||||
|
|
||||||
def ConvertMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks):
|
def ConvertMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks):
|
||||||
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
||||||
|
|
||||||
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
|
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
|
||||||
|
|
||||||
if cfg.mode == 'original':
|
if cfg.mode == 'original':
|
||||||
|
@ -231,7 +229,7 @@ def ConvertMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, i
|
||||||
hist_match_2 = dst_face_bgr*hist_mask_a + white
|
hist_match_2 = dst_face_bgr*hist_mask_a + white
|
||||||
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
|
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
|
||||||
|
|
||||||
prd_face_bgr = imagelib.color_hist_match(hist_match_1, hist_match_2, cfg.hist_match_threshold )
|
prd_face_bgr = imagelib.color_hist_match(hist_match_1, hist_match_2, cfg.hist_match_threshold ).astype(dtype=np.float32)
|
||||||
|
|
||||||
if cfg.mode == 'hist-match-bw':
|
if cfg.mode == 'hist-match-bw':
|
||||||
prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)
|
prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)
|
||||||
|
@ -254,9 +252,7 @@ def ConvertMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, i
|
||||||
break
|
break
|
||||||
|
|
||||||
if cfg.mode == 'seamless2':
|
if cfg.mode == 'seamless2':
|
||||||
|
|
||||||
face_seamless = imagelib.seamless_clone ( prd_face_bgr, dst_face_bgr, img_face_seamless_mask_a )
|
face_seamless = imagelib.seamless_clone ( prd_face_bgr, dst_face_bgr, img_face_seamless_mask_a )
|
||||||
|
|
||||||
out_img = cv2.warpAffine( face_seamless, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
out_img = cv2.warpAffine( face_seamless, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||||
else:
|
else:
|
||||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||||
|
@ -279,6 +275,7 @@ def ConvertMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, i
|
||||||
else:
|
else:
|
||||||
print ("Seamless fail: " + e_str)
|
print ("Seamless fail: " + e_str)
|
||||||
|
|
||||||
|
|
||||||
out_img = img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa)
|
out_img = img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa)
|
||||||
|
|
||||||
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
|
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
|
||||||
|
@ -322,6 +319,23 @@ def ConvertMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, i
|
||||||
if cfg.blursharpen_amount != 0:
|
if cfg.blursharpen_amount != 0:
|
||||||
out_face_bgr = cfg.blursharpen_func ( out_face_bgr, cfg.sharpen_mode, 3, cfg.blursharpen_amount)
|
out_face_bgr = cfg.blursharpen_func ( out_face_bgr, cfg.sharpen_mode, 3, cfg.blursharpen_amount)
|
||||||
|
|
||||||
|
|
||||||
|
if cfg.image_denoise_power != 0:
|
||||||
|
n = cfg.image_denoise_power
|
||||||
|
while n > 0:
|
||||||
|
img_bgr_denoised = cv2.medianBlur(img_bgr, 5)
|
||||||
|
if int(n / 100) != 0:
|
||||||
|
img_bgr = img_bgr_denoised
|
||||||
|
else:
|
||||||
|
pass_power = (n % 100) / 100.0
|
||||||
|
img_bgr = img_bgr*(1.0-pass_power)+img_bgr_denoised*pass_power
|
||||||
|
n = max(n-10,0)
|
||||||
|
|
||||||
|
if cfg.bicubic_degrade_power != 0:
|
||||||
|
p = 1.0 - cfg.bicubic_degrade_power / 101.0
|
||||||
|
img_bgr_downscaled = cv2.resize (img_bgr, ( int(img_size[0]*p), int(img_size[1]*p ) ), cv2.INTER_CUBIC)
|
||||||
|
img_bgr = cv2.resize (img_bgr_downscaled, img_size, cv2.INTER_CUBIC)
|
||||||
|
|
||||||
new_out = cv2.warpAffine( out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
new_out = cv2.warpAffine( out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||||
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
|
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
|
||||||
|
|
||||||
|
|
|
@ -14,7 +14,13 @@ class ConverterConfig(object):
|
||||||
TYPE_IMAGE = 3
|
TYPE_IMAGE = 3
|
||||||
TYPE_IMAGE_WITH_LANDMARKS = 4
|
TYPE_IMAGE_WITH_LANDMARKS = 4
|
||||||
|
|
||||||
def __init__(self, type=0):
|
def __init__(self, type=0,
|
||||||
|
|
||||||
|
super_resolution_mode=0,
|
||||||
|
sharpen_mode=0,
|
||||||
|
blursharpen_amount=0,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
self.type = type
|
self.type = type
|
||||||
|
|
||||||
self.superres_func = None
|
self.superres_func = None
|
||||||
|
@ -30,9 +36,9 @@ class ConverterConfig(object):
|
||||||
self.sharpen_dict = {0:"None", 1:'box', 2:'gaussian'}
|
self.sharpen_dict = {0:"None", 1:'box', 2:'gaussian'}
|
||||||
|
|
||||||
#default changeable params
|
#default changeable params
|
||||||
self.super_resolution_mode = 0
|
self.super_resolution_mode = super_resolution_mode
|
||||||
self.sharpen_mode = 0
|
self.sharpen_mode = sharpen_mode
|
||||||
self.blursharpen_amount = 0
|
self.blursharpen_amount = blursharpen_amount
|
||||||
|
|
||||||
def copy(self):
|
def copy(self):
|
||||||
return copy.copy(self)
|
return copy.copy(self)
|
||||||
|
@ -65,6 +71,16 @@ class ConverterConfig(object):
|
||||||
a = list( self.super_res_dict.keys() )
|
a = list( self.super_res_dict.keys() )
|
||||||
self.super_resolution_mode = a[ (a.index(self.super_resolution_mode)+1) % len(a) ]
|
self.super_resolution_mode = a[ (a.index(self.super_resolution_mode)+1) % len(a) ]
|
||||||
|
|
||||||
|
#overridable
|
||||||
|
def get_config(self):
|
||||||
|
d = self.__dict__.copy()
|
||||||
|
d.pop('type')
|
||||||
|
return d
|
||||||
|
return {'sharpen_mode':self.sharpen_mode,
|
||||||
|
'blursharpen_amount':self.blursharpen_amount,
|
||||||
|
'super_resolution_mode':self.super_resolution_mode
|
||||||
|
}
|
||||||
|
|
||||||
#overridable
|
#overridable
|
||||||
def __eq__(self, other):
|
def __eq__(self, other):
|
||||||
#check equality of changeable params
|
#check equality of changeable params
|
||||||
|
@ -115,9 +131,24 @@ class ConverterConfigMasked(ConverterConfig):
|
||||||
def __init__(self, face_type=FaceType.FULL,
|
def __init__(self, face_type=FaceType.FULL,
|
||||||
default_mode = 4,
|
default_mode = 4,
|
||||||
clip_hborder_mask_per = 0,
|
clip_hborder_mask_per = 0,
|
||||||
|
|
||||||
|
mode='overlay',
|
||||||
|
masked_hist_match=True,
|
||||||
|
hist_match_threshold = 238,
|
||||||
|
mask_mode = 1,
|
||||||
|
erode_mask_modifier = 0,
|
||||||
|
blur_mask_modifier = 0,
|
||||||
|
motion_blur_power = 0,
|
||||||
|
output_face_scale = 0,
|
||||||
|
color_transfer_mode = 0,
|
||||||
|
image_denoise_power = 0,
|
||||||
|
bicubic_degrade_power = 0,
|
||||||
|
color_degrade_power = 0,
|
||||||
|
export_mask_alpha = False,
|
||||||
|
**kwargs
|
||||||
):
|
):
|
||||||
|
|
||||||
super().__init__(type=ConverterConfig.TYPE_MASKED)
|
super().__init__(type=ConverterConfig.TYPE_MASKED, **kwargs)
|
||||||
|
|
||||||
self.face_type = face_type
|
self.face_type = face_type
|
||||||
if self.face_type not in [FaceType.HALF, FaceType.MID_FULL, FaceType.FULL ]:
|
if self.face_type not in [FaceType.HALF, FaceType.MID_FULL, FaceType.FULL ]:
|
||||||
|
@ -127,17 +158,19 @@ class ConverterConfigMasked(ConverterConfig):
|
||||||
self.clip_hborder_mask_per = clip_hborder_mask_per
|
self.clip_hborder_mask_per = clip_hborder_mask_per
|
||||||
|
|
||||||
#default changeable params
|
#default changeable params
|
||||||
self.mode = 'overlay'
|
self.mode = mode
|
||||||
self.masked_hist_match = True
|
self.masked_hist_match = masked_hist_match
|
||||||
self.hist_match_threshold = 238
|
self.hist_match_threshold = hist_match_threshold
|
||||||
self.mask_mode = 1
|
self.mask_mode = mask_mode
|
||||||
self.erode_mask_modifier = 0
|
self.erode_mask_modifier = erode_mask_modifier
|
||||||
self.blur_mask_modifier = 0
|
self.blur_mask_modifier = blur_mask_modifier
|
||||||
self.motion_blur_power = 0
|
self.motion_blur_power = motion_blur_power
|
||||||
self.output_face_scale = 0
|
self.output_face_scale = output_face_scale
|
||||||
self.color_transfer_mode = 0
|
self.color_transfer_mode = color_transfer_mode
|
||||||
self.color_degrade_power = 0
|
self.image_denoise_power = image_denoise_power
|
||||||
self.export_mask_alpha = False
|
self.bicubic_degrade_power = bicubic_degrade_power
|
||||||
|
self.color_degrade_power = color_degrade_power
|
||||||
|
self.export_mask_alpha = export_mask_alpha
|
||||||
|
|
||||||
def copy(self):
|
def copy(self):
|
||||||
return copy.copy(self)
|
return copy.copy(self)
|
||||||
|
@ -178,6 +211,12 @@ class ConverterConfigMasked(ConverterConfig):
|
||||||
def add_color_degrade_power(self, diff):
|
def add_color_degrade_power(self, diff):
|
||||||
self.color_degrade_power = np.clip ( self.color_degrade_power+diff , 0, 100)
|
self.color_degrade_power = np.clip ( self.color_degrade_power+diff , 0, 100)
|
||||||
|
|
||||||
|
def add_image_denoise_power(self, diff):
|
||||||
|
self.image_denoise_power = np.clip ( self.image_denoise_power+diff, 0, 500)
|
||||||
|
|
||||||
|
def add_bicubic_degrade_power(self, diff):
|
||||||
|
self.bicubic_degrade_power = np.clip ( self.bicubic_degrade_power+diff, 0, 100)
|
||||||
|
|
||||||
def toggle_export_mask_alpha(self):
|
def toggle_export_mask_alpha(self):
|
||||||
self.export_mask_alpha = not self.export_mask_alpha
|
self.export_mask_alpha = not self.export_mask_alpha
|
||||||
|
|
||||||
|
@ -227,6 +266,8 @@ class ConverterConfigMasked(ConverterConfig):
|
||||||
super().ask_settings()
|
super().ask_settings()
|
||||||
|
|
||||||
if 'raw' not in self.mode:
|
if 'raw' not in self.mode:
|
||||||
|
self.image_denoise_power = np.clip ( io.input_int ("Choose image degrade by denoise power [0..500] (skip:%d) : " % (0), 0), 0, 500)
|
||||||
|
self.bicubic_degrade_power = np.clip ( io.input_int ("Choose image degrade by bicubic rescale power [0..100] (skip:%d) : " % (0), 0), 0, 100)
|
||||||
self.color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
|
self.color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
|
||||||
self.export_mask_alpha = io.input_bool("Export png with alpha channel of the mask? (y/n skip:n) : ", False)
|
self.export_mask_alpha = io.input_bool("Export png with alpha channel of the mask? (y/n skip:n) : ", False)
|
||||||
|
|
||||||
|
@ -246,6 +287,8 @@ class ConverterConfigMasked(ConverterConfig):
|
||||||
self.motion_blur_power == other.motion_blur_power and \
|
self.motion_blur_power == other.motion_blur_power and \
|
||||||
self.output_face_scale == other.output_face_scale and \
|
self.output_face_scale == other.output_face_scale and \
|
||||||
self.color_transfer_mode == other.color_transfer_mode and \
|
self.color_transfer_mode == other.color_transfer_mode and \
|
||||||
|
self.image_denoise_power == other.image_denoise_power and \
|
||||||
|
self.bicubic_degrade_power == other.bicubic_degrade_power and \
|
||||||
self.color_degrade_power == other.color_degrade_power and \
|
self.color_degrade_power == other.color_degrade_power and \
|
||||||
self.export_mask_alpha == other.export_mask_alpha
|
self.export_mask_alpha == other.export_mask_alpha
|
||||||
|
|
||||||
|
@ -281,7 +324,9 @@ class ConverterConfigMasked(ConverterConfig):
|
||||||
r += super().to_string(filename)
|
r += super().to_string(filename)
|
||||||
|
|
||||||
if 'raw' not in self.mode:
|
if 'raw' not in self.mode:
|
||||||
r += (f"""color_degrade_power: {self.color_degrade_power}\n"""
|
r += (f"""image_denoise_power: {self.image_denoise_power}\n"""
|
||||||
|
f"""bicubic_degrade_power: {self.bicubic_degrade_power}\n"""
|
||||||
|
f"""color_degrade_power: {self.color_degrade_power}\n"""
|
||||||
f"""export_mask_alpha: {self.export_mask_alpha}\n""")
|
f"""export_mask_alpha: {self.export_mask_alpha}\n""")
|
||||||
|
|
||||||
r += "================"
|
r += "================"
|
||||||
|
@ -291,12 +336,13 @@ class ConverterConfigMasked(ConverterConfig):
|
||||||
|
|
||||||
class ConverterConfigFaceAvatar(ConverterConfig):
|
class ConverterConfigFaceAvatar(ConverterConfig):
|
||||||
|
|
||||||
def __init__(self, temporal_face_count=0):
|
def __init__(self, temporal_face_count=0,
|
||||||
|
add_source_image=False):
|
||||||
super().__init__(type=ConverterConfig.TYPE_FACE_AVATAR)
|
super().__init__(type=ConverterConfig.TYPE_FACE_AVATAR)
|
||||||
self.temporal_face_count = temporal_face_count
|
self.temporal_face_count = temporal_face_count
|
||||||
|
|
||||||
#changeable params
|
#changeable params
|
||||||
self.add_source_image = False
|
self.add_source_image = add_source_image
|
||||||
|
|
||||||
def copy(self):
|
def copy(self):
|
||||||
return copy.copy(self)
|
return copy.copy(self)
|
||||||
|
|
|
@ -33,7 +33,7 @@ def color_transfer_mkl(x0, x1):
|
||||||
mx1 = np.mean(x1, axis=0)
|
mx1 = np.mean(x1, axis=0)
|
||||||
|
|
||||||
result = np.dot(x0-mx0, t) + mx1
|
result = np.dot(x0-mx0, t) + mx1
|
||||||
return np.clip ( result.reshape ( (h,w,c) ), 0, 1)
|
return np.clip ( result.reshape ( (h,w,c) ).astype(x0.dtype), 0, 1)
|
||||||
|
|
||||||
def color_transfer_idt(i0, i1, bins=256, n_rot=20):
|
def color_transfer_idt(i0, i1, bins=256, n_rot=20):
|
||||||
relaxation = 1 / n_rot
|
relaxation = 1 / n_rot
|
||||||
|
@ -76,7 +76,7 @@ def color_transfer_idt(i0, i1, bins=256, n_rot=20):
|
||||||
|
|
||||||
d0 = relaxation * np.linalg.solve(r, (d_r - d0r)) + d0
|
d0 = relaxation * np.linalg.solve(r, (d_r - d0r)) + d0
|
||||||
|
|
||||||
return np.clip ( d0.T.reshape ( (h,w,c) ), 0, 1)
|
return np.clip ( d0.T.reshape ( (h,w,c) ).astype(i0.dtype) , 0, 1)
|
||||||
|
|
||||||
def laplacian_matrix(n, m):
|
def laplacian_matrix(n, m):
|
||||||
mat_D = scipy.sparse.lil_matrix((m, m))
|
mat_D = scipy.sparse.lil_matrix((m, m))
|
||||||
|
|
|
@ -104,8 +104,17 @@ class ConvertSubprocessor(Subprocessor):
|
||||||
img = cv2.addWeighted(img, 1.0 + (0.5 * amount), blur, -(0.5 * amount), 0)
|
img = cv2.addWeighted(img, 1.0 + (0.5 * amount), blur, -(0.5 * amount), 0)
|
||||||
return img
|
return img
|
||||||
elif amount < 0:
|
elif amount < 0:
|
||||||
blur = cv2.GaussianBlur(img, (kernel_size, kernel_size) , 0)
|
n = -amount
|
||||||
img = cv2.addWeighted(img, 1.0 - a / 50.0, blur, a /50.0, 0)
|
while n > 0:
|
||||||
|
|
||||||
|
img_blur = cv2.medianBlur(img, 5)
|
||||||
|
if int(n / 10) != 0:
|
||||||
|
img = img_blur
|
||||||
|
else:
|
||||||
|
pass_power = (n % 10) / 10.0
|
||||||
|
img = img*(1.0-pass_power)+img_blur*pass_power
|
||||||
|
n = max(n-10,0)
|
||||||
|
|
||||||
return img
|
return img
|
||||||
return img
|
return img
|
||||||
self.blursharpen_func = blursharpen_func
|
self.blursharpen_func = blursharpen_func
|
||||||
|
@ -276,10 +285,19 @@ class ConvertSubprocessor(Subprocessor):
|
||||||
|
|
||||||
if frames_equal:
|
if frames_equal:
|
||||||
io.log_info ('Using saved session from ' + '/'.join (self.converter_session_filepath.parts[-2:]) )
|
io.log_info ('Using saved session from ' + '/'.join (self.converter_session_filepath.parts[-2:]) )
|
||||||
|
|
||||||
|
for frame in s_frames:
|
||||||
|
if frame.cfg is not None:
|
||||||
|
#recreate ConverterConfig class using constructor with get_config() as dict params
|
||||||
|
#so if any new param will be added, old converter session will work properly
|
||||||
|
frame.cfg = frame.cfg.__class__( **frame.cfg.get_config() )
|
||||||
|
|
||||||
self.frames = s_frames
|
self.frames = s_frames
|
||||||
self.frames_idxs = s_frames_idxs
|
self.frames_idxs = s_frames_idxs
|
||||||
self.frames_done_idxs = s_frames_done_idxs
|
self.frames_done_idxs = s_frames_done_idxs
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if self.model_iter != s_model_iter:
|
if self.model_iter != s_model_iter:
|
||||||
#model is more trained, recompute all frames
|
#model is more trained, recompute all frames
|
||||||
for frame in self.frames:
|
for frame in self.frames:
|
||||||
|
@ -367,7 +385,7 @@ class ConvertSubprocessor(Subprocessor):
|
||||||
io.log_info ("Session is saved to " + '/'.join (self.converter_session_filepath.parts[-2:]) )
|
io.log_info ("Session is saved to " + '/'.join (self.converter_session_filepath.parts[-2:]) )
|
||||||
|
|
||||||
cfg_change_keys = ['`','1', '2', '3', '4', '5', '6', '7', '8', '9',
|
cfg_change_keys = ['`','1', '2', '3', '4', '5', '6', '7', '8', '9',
|
||||||
'q', 'a', 'w', 's', 'e', 'd', 'r', 'f', 't', 'g','y','h','u','j',
|
'q', 'a', 'w', 's', 'e', 'd', 'r', 'f', 'y','h','u','j','i','k','o','l','p', ';',':',#'t', 'g',
|
||||||
'z', 'x', 'c', 'v', 'b','n' ]
|
'z', 'x', 'c', 'v', 'b','n' ]
|
||||||
#override
|
#override
|
||||||
def on_tick(self):
|
def on_tick(self):
|
||||||
|
@ -447,10 +465,6 @@ class ConvertSubprocessor(Subprocessor):
|
||||||
cfg.add_motion_blur_power(1 if not shift_pressed else 5)
|
cfg.add_motion_blur_power(1 if not shift_pressed else 5)
|
||||||
elif chr_key == 'f':
|
elif chr_key == 'f':
|
||||||
cfg.add_motion_blur_power(-1 if not shift_pressed else -5)
|
cfg.add_motion_blur_power(-1 if not shift_pressed else -5)
|
||||||
elif chr_key == 't':
|
|
||||||
cfg.add_color_degrade_power(1 if not shift_pressed else 5)
|
|
||||||
elif chr_key == 'g':
|
|
||||||
cfg.add_color_degrade_power(-1 if not shift_pressed else -5)
|
|
||||||
elif chr_key == 'y':
|
elif chr_key == 'y':
|
||||||
cfg.add_blursharpen_amount(1 if not shift_pressed else 5)
|
cfg.add_blursharpen_amount(1 if not shift_pressed else 5)
|
||||||
elif chr_key == 'h':
|
elif chr_key == 'h':
|
||||||
|
@ -459,6 +473,21 @@ class ConvertSubprocessor(Subprocessor):
|
||||||
cfg.add_output_face_scale(1 if not shift_pressed else 5)
|
cfg.add_output_face_scale(1 if not shift_pressed else 5)
|
||||||
elif chr_key == 'j':
|
elif chr_key == 'j':
|
||||||
cfg.add_output_face_scale(-1 if not shift_pressed else -5)
|
cfg.add_output_face_scale(-1 if not shift_pressed else -5)
|
||||||
|
elif chr_key == 'i':
|
||||||
|
cfg.add_image_denoise_power(1 if not shift_pressed else 5)
|
||||||
|
elif chr_key == 'k':
|
||||||
|
cfg.add_image_denoise_power(-1 if not shift_pressed else -5)
|
||||||
|
elif chr_key == 'o':
|
||||||
|
cfg.add_bicubic_degrade_power(1 if not shift_pressed else 5)
|
||||||
|
elif chr_key == 'l':
|
||||||
|
cfg.add_bicubic_degrade_power(-1 if not shift_pressed else -5)
|
||||||
|
|
||||||
|
elif chr_key == 'p':
|
||||||
|
cfg.add_color_degrade_power(1 if not shift_pressed else 5)
|
||||||
|
elif chr_key == ';':
|
||||||
|
cfg.add_color_degrade_power(-1)
|
||||||
|
elif chr_key == ':':
|
||||||
|
cfg.add_color_degrade_power(-5)
|
||||||
|
|
||||||
elif chr_key == 'z':
|
elif chr_key == 'z':
|
||||||
cfg.toggle_masked_hist_match()
|
cfg.toggle_masked_hist_match()
|
||||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 385 KiB After Width: | Height: | Size: 405 KiB |
Binary file not shown.
|
@ -50,7 +50,7 @@ class SAEHDModel(ModelBase):
|
||||||
else:
|
else:
|
||||||
self.options['archi'] = self.options.get('archi', default_archi)
|
self.options['archi'] = self.options.get('archi', default_archi)
|
||||||
|
|
||||||
default_ae_dims = 256 if 'liae' in self.options['archi'] else 512
|
default_ae_dims = 256
|
||||||
default_ed_ch_dims = 21
|
default_ed_ch_dims = 21
|
||||||
|
|
||||||
if is_first_run:
|
if is_first_run:
|
||||||
|
|
128
nnlib/nnlib.py
128
nnlib/nnlib.py
|
@ -95,6 +95,7 @@ gaussian_blur = nnlib.gaussian_blur
|
||||||
style_loss = nnlib.style_loss
|
style_loss = nnlib.style_loss
|
||||||
dssim = nnlib.dssim
|
dssim = nnlib.dssim
|
||||||
|
|
||||||
|
DenseMaxout = nnlib.DenseMaxout
|
||||||
PixelShuffler = nnlib.PixelShuffler
|
PixelShuffler = nnlib.PixelShuffler
|
||||||
SubpixelUpscaler = nnlib.SubpixelUpscaler
|
SubpixelUpscaler = nnlib.SubpixelUpscaler
|
||||||
SubpixelDownscaler = nnlib.SubpixelDownscaler
|
SubpixelDownscaler = nnlib.SubpixelDownscaler
|
||||||
|
@ -912,6 +913,133 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
|
||||||
return dict(list(base_config.items()) + list(config.items()))
|
return dict(list(base_config.items()) + list(config.items()))
|
||||||
nnlib.Adam = Adam
|
nnlib.Adam = Adam
|
||||||
|
|
||||||
|
class DenseMaxout(keras.layers.Layer):
|
||||||
|
"""A dense maxout layer.
|
||||||
|
A `MaxoutDense` layer takes the element-wise maximum of
|
||||||
|
`nb_feature` `Dense(input_dim, output_dim)` linear layers.
|
||||||
|
This allows the layer to learn a convex,
|
||||||
|
piecewise linear activation function over the inputs.
|
||||||
|
Note that this is a *linear* layer;
|
||||||
|
if you wish to apply activation function
|
||||||
|
(you shouldn't need to --they are universal function approximators),
|
||||||
|
an `Activation` layer must be added after.
|
||||||
|
# Arguments
|
||||||
|
output_dim: int > 0.
|
||||||
|
nb_feature: number of Dense layers to use internally.
|
||||||
|
init: name of initialization function for the weights of the layer
|
||||||
|
(see [initializations](../initializations.md)),
|
||||||
|
or alternatively, Theano function to use for weights
|
||||||
|
initialization. This parameter is only relevant
|
||||||
|
if you don't pass a `weights` argument.
|
||||||
|
weights: list of Numpy arrays to set as initial weights.
|
||||||
|
The list should have 2 elements, of shape `(input_dim, output_dim)`
|
||||||
|
and (output_dim,) for weights and biases respectively.
|
||||||
|
W_regularizer: instance of [WeightRegularizer](../regularizers.md)
|
||||||
|
(eg. L1 or L2 regularization), applied to the main weights matrix.
|
||||||
|
b_regularizer: instance of [WeightRegularizer](../regularizers.md),
|
||||||
|
applied to the bias.
|
||||||
|
activity_regularizer: instance of [ActivityRegularizer](../regularizers.md),
|
||||||
|
applied to the network output.
|
||||||
|
W_constraint: instance of the [constraints](../constraints.md) module
|
||||||
|
(eg. maxnorm, nonneg), applied to the main weights matrix.
|
||||||
|
b_constraint: instance of the [constraints](../constraints.md) module,
|
||||||
|
applied to the bias.
|
||||||
|
bias: whether to include a bias
|
||||||
|
(i.e. make the layer affine rather than linear).
|
||||||
|
input_dim: dimensionality of the input (integer). This argument
|
||||||
|
(or alternatively, the keyword argument `input_shape`)
|
||||||
|
is required when using this layer as the first layer in a model.
|
||||||
|
# Input shape
|
||||||
|
2D tensor with shape: `(nb_samples, input_dim)`.
|
||||||
|
# Output shape
|
||||||
|
2D tensor with shape: `(nb_samples, output_dim)`.
|
||||||
|
# References
|
||||||
|
- [Maxout Networks](http://arxiv.org/abs/1302.4389)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, output_dim,
|
||||||
|
nb_feature=4,
|
||||||
|
kernel_initializer='glorot_uniform',
|
||||||
|
weights=None,
|
||||||
|
W_regularizer=None,
|
||||||
|
b_regularizer=None,
|
||||||
|
activity_regularizer=None,
|
||||||
|
W_constraint=None,
|
||||||
|
b_constraint=None,
|
||||||
|
bias=True,
|
||||||
|
input_dim=None,
|
||||||
|
**kwargs):
|
||||||
|
self.output_dim = output_dim
|
||||||
|
self.nb_feature = nb_feature
|
||||||
|
self.kernel_initializer = keras.initializers.get(kernel_initializer)
|
||||||
|
|
||||||
|
self.W_regularizer = keras.regularizers.get(W_regularizer)
|
||||||
|
self.b_regularizer = keras.regularizers.get(b_regularizer)
|
||||||
|
self.activity_regularizer = keras.regularizers.get(activity_regularizer)
|
||||||
|
|
||||||
|
self.W_constraint = keras.constraints.get(W_constraint)
|
||||||
|
self.b_constraint = keras.constraints.get(b_constraint)
|
||||||
|
|
||||||
|
self.bias = bias
|
||||||
|
self.initial_weights = weights
|
||||||
|
self.input_spec = keras.layers.InputSpec(ndim=2)
|
||||||
|
|
||||||
|
self.input_dim = input_dim
|
||||||
|
if self.input_dim:
|
||||||
|
kwargs['input_shape'] = (self.input_dim,)
|
||||||
|
super(DenseMaxout, self).__init__(**kwargs)
|
||||||
|
|
||||||
|
def build(self, input_shape):
|
||||||
|
input_dim = input_shape[1]
|
||||||
|
self.input_spec = keras.layers.InputSpec(dtype=K.floatx(),
|
||||||
|
shape=(None, input_dim))
|
||||||
|
|
||||||
|
self.W = self.add_weight(shape=(self.nb_feature, input_dim, self.output_dim),
|
||||||
|
initializer=self.kernel_initializer,
|
||||||
|
name='W',
|
||||||
|
regularizer=self.W_regularizer,
|
||||||
|
constraint=self.W_constraint)
|
||||||
|
if self.bias:
|
||||||
|
self.b = self.add_weight(shape=(self.nb_feature, self.output_dim,),
|
||||||
|
initializer='zero',
|
||||||
|
name='b',
|
||||||
|
regularizer=self.b_regularizer,
|
||||||
|
constraint=self.b_constraint)
|
||||||
|
else:
|
||||||
|
self.b = None
|
||||||
|
|
||||||
|
if self.initial_weights is not None:
|
||||||
|
self.set_weights(self.initial_weights)
|
||||||
|
del self.initial_weights
|
||||||
|
self.built = True
|
||||||
|
|
||||||
|
def compute_output_shape(self, input_shape):
|
||||||
|
assert input_shape and len(input_shape) == 2
|
||||||
|
return (input_shape[0], self.output_dim)
|
||||||
|
|
||||||
|
def call(self, x):
|
||||||
|
# no activation, this layer is only linear.
|
||||||
|
output = K.dot(x, self.W)
|
||||||
|
if self.bias:
|
||||||
|
output += self.b
|
||||||
|
output = K.max(output, axis=1)
|
||||||
|
return output
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
config = {'output_dim': self.output_dim,
|
||||||
|
'kernel_initializer': initializers.serialize(self.kernel_initializer),
|
||||||
|
'nb_feature': self.nb_feature,
|
||||||
|
'W_regularizer': regularizers.serialize(self.W_regularizer),
|
||||||
|
'b_regularizer': regularizers.serialize(self.b_regularizer),
|
||||||
|
'activity_regularizer': regularizers.serialize(self.activity_regularizer),
|
||||||
|
'W_constraint': constraints.serialize(self.W_constraint),
|
||||||
|
'b_constraint': constraints.serialize(self.b_constraint),
|
||||||
|
'bias': self.bias,
|
||||||
|
'input_dim': self.input_dim}
|
||||||
|
base_config = super(DenseMaxout, self).get_config()
|
||||||
|
return dict(list(base_config.items()) + list(config.items()))
|
||||||
|
nnlib.DenseMaxout = DenseMaxout
|
||||||
|
|
||||||
def CAInitializerMP( conv_weights_list ):
|
def CAInitializerMP( conv_weights_list ):
|
||||||
#Convolution Aware Initialization https://arxiv.org/abs/1702.06295
|
#Convolution Aware Initialization https://arxiv.org/abs/1702.06295
|
||||||
data = [ (i, K.int_shape(conv_weights)) for i, conv_weights in enumerate(conv_weights_list) ]
|
data = [ (i, K.int_shape(conv_weights)) for i, conv_weights in enumerate(conv_weights_list) ]
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue