converter:

fixed crashes

removed useless 'ebs' color transfer

changed keys for color degrade

added image degrade via denoise - same as denoise extracted data_dst.bat ,
but you can control this option directly in the interactive converter

added image degrade via bicubic downscale and upscale

SAEHD: default ae_dims for df now 256.
This commit is contained in:
Colombo 2019-11-09 15:12:35 +04:00
parent 374d8c2388
commit 770c70d778
8 changed files with 274 additions and 57 deletions

View file

@ -95,6 +95,7 @@ gaussian_blur = nnlib.gaussian_blur
style_loss = nnlib.style_loss
dssim = nnlib.dssim
DenseMaxout = nnlib.DenseMaxout
PixelShuffler = nnlib.PixelShuffler
SubpixelUpscaler = nnlib.SubpixelUpscaler
SubpixelDownscaler = nnlib.SubpixelDownscaler
@ -911,7 +912,134 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
base_config = super(Adam, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
nnlib.Adam = Adam
class DenseMaxout(keras.layers.Layer):
"""A dense maxout layer.
A `MaxoutDense` layer takes the element-wise maximum of
`nb_feature` `Dense(input_dim, output_dim)` linear layers.
This allows the layer to learn a convex,
piecewise linear activation function over the inputs.
Note that this is a *linear* layer;
if you wish to apply activation function
(you shouldn't need to --they are universal function approximators),
an `Activation` layer must be added after.
# Arguments
output_dim: int > 0.
nb_feature: number of Dense layers to use internally.
init: name of initialization function for the weights of the layer
(see [initializations](../initializations.md)),
or alternatively, Theano function to use for weights
initialization. This parameter is only relevant
if you don't pass a `weights` argument.
weights: list of Numpy arrays to set as initial weights.
The list should have 2 elements, of shape `(input_dim, output_dim)`
and (output_dim,) for weights and biases respectively.
W_regularizer: instance of [WeightRegularizer](../regularizers.md)
(eg. L1 or L2 regularization), applied to the main weights matrix.
b_regularizer: instance of [WeightRegularizer](../regularizers.md),
applied to the bias.
activity_regularizer: instance of [ActivityRegularizer](../regularizers.md),
applied to the network output.
W_constraint: instance of the [constraints](../constraints.md) module
(eg. maxnorm, nonneg), applied to the main weights matrix.
b_constraint: instance of the [constraints](../constraints.md) module,
applied to the bias.
bias: whether to include a bias
(i.e. make the layer affine rather than linear).
input_dim: dimensionality of the input (integer). This argument
(or alternatively, the keyword argument `input_shape`)
is required when using this layer as the first layer in a model.
# Input shape
2D tensor with shape: `(nb_samples, input_dim)`.
# Output shape
2D tensor with shape: `(nb_samples, output_dim)`.
# References
- [Maxout Networks](http://arxiv.org/abs/1302.4389)
"""
def __init__(self, output_dim,
nb_feature=4,
kernel_initializer='glorot_uniform',
weights=None,
W_regularizer=None,
b_regularizer=None,
activity_regularizer=None,
W_constraint=None,
b_constraint=None,
bias=True,
input_dim=None,
**kwargs):
self.output_dim = output_dim
self.nb_feature = nb_feature
self.kernel_initializer = keras.initializers.get(kernel_initializer)
self.W_regularizer = keras.regularizers.get(W_regularizer)
self.b_regularizer = keras.regularizers.get(b_regularizer)
self.activity_regularizer = keras.regularizers.get(activity_regularizer)
self.W_constraint = keras.constraints.get(W_constraint)
self.b_constraint = keras.constraints.get(b_constraint)
self.bias = bias
self.initial_weights = weights
self.input_spec = keras.layers.InputSpec(ndim=2)
self.input_dim = input_dim
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(DenseMaxout, self).__init__(**kwargs)
def build(self, input_shape):
input_dim = input_shape[1]
self.input_spec = keras.layers.InputSpec(dtype=K.floatx(),
shape=(None, input_dim))
self.W = self.add_weight(shape=(self.nb_feature, input_dim, self.output_dim),
initializer=self.kernel_initializer,
name='W',
regularizer=self.W_regularizer,
constraint=self.W_constraint)
if self.bias:
self.b = self.add_weight(shape=(self.nb_feature, self.output_dim,),
initializer='zero',
name='b',
regularizer=self.b_regularizer,
constraint=self.b_constraint)
else:
self.b = None
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
self.built = True
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) == 2
return (input_shape[0], self.output_dim)
def call(self, x):
# no activation, this layer is only linear.
output = K.dot(x, self.W)
if self.bias:
output += self.b
output = K.max(output, axis=1)
return output
def get_config(self):
config = {'output_dim': self.output_dim,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'nb_feature': self.nb_feature,
'W_regularizer': regularizers.serialize(self.W_regularizer),
'b_regularizer': regularizers.serialize(self.b_regularizer),
'activity_regularizer': regularizers.serialize(self.activity_regularizer),
'W_constraint': constraints.serialize(self.W_constraint),
'b_constraint': constraints.serialize(self.b_constraint),
'bias': self.bias,
'input_dim': self.input_dim}
base_config = super(DenseMaxout, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
nnlib.DenseMaxout = DenseMaxout
def CAInitializerMP( conv_weights_list ):
#Convolution Aware Initialization https://arxiv.org/abs/1702.06295
data = [ (i, K.int_shape(conv_weights)) for i, conv_weights in enumerate(conv_weights_list) ]