converter:

fixed crashes

removed useless 'ebs' color transfer

changed keys for color degrade

added image degrade via denoise - same as denoise extracted data_dst.bat ,
but you can control this option directly in the interactive converter

added image degrade via bicubic downscale and upscale

SAEHD: default ae_dims for df now 256.
This commit is contained in:
Colombo 2019-11-09 15:12:35 +04:00
parent 374d8c2388
commit 770c70d778
8 changed files with 274 additions and 57 deletions

View file

@ -101,12 +101,21 @@ class ConvertSubprocessor(Subprocessor):
return cv2.filter2D(img, -1, kernel)
elif sharpen_mode == 2: #gaussian
blur = cv2.GaussianBlur(img, (kernel_size, kernel_size) , 0)
img = cv2.addWeighted(img, 1.0 + (0.5 * amount), blur, -(0.5 * amount), 0)
img = cv2.addWeighted(img, 1.0 + (0.5 * amount), blur, -(0.5 * amount), 0)
return img
elif amount < 0:
blur = cv2.GaussianBlur(img, (kernel_size, kernel_size) , 0)
img = cv2.addWeighted(img, 1.0 - a / 50.0, blur, a /50.0, 0)
return img
n = -amount
while n > 0:
img_blur = cv2.medianBlur(img, 5)
if int(n / 10) != 0:
img = img_blur
else:
pass_power = (n % 10) / 10.0
img = img*(1.0-pass_power)+img_blur*pass_power
n = max(n-10,0)
return img
return img
self.blursharpen_func = blursharpen_func
@ -122,7 +131,7 @@ class ConvertSubprocessor(Subprocessor):
return fanseg.extract(*args, **kwargs)
self.fanseg_extract_func = fanseg_extract
self.fanchq_by_face_type = {}
self.fanchq_input_size = 256
def fanchq_extract(face_type, *args, **kwargs):
@ -134,13 +143,13 @@ class ConvertSubprocessor(Subprocessor):
return fanchq.extract(*args, **kwargs)
self.fanchq_extract_func = fanchq_extract
import ebsynth
def ebs_ct(*args, **kwargs):
def ebs_ct(*args, **kwargs):
return ebsynth.color_transfer(*args, **kwargs)
self.ebs_ct_func = ebs_ct
return None
#override
@ -188,7 +197,7 @@ class ConvertSubprocessor(Subprocessor):
raise Exception( 'Error while converting file [%s]: %s' % (filename, e_str) )
elif cfg.type == ConverterConfig.TYPE_FACE_AVATAR:
final_img = ConvertFaceAvatar (self.predictor_func, self.predictor_input_shape,
final_img = ConvertFaceAvatar (self.predictor_func, self.predictor_input_shape,
cfg, pf.prev_temporal_frame_infos,
pf.frame_info,
pf.next_temporal_frame_infos )
@ -241,7 +250,7 @@ class ConvertSubprocessor(Subprocessor):
session_data = None
if self.is_interactive and self.converter_session_filepath.exists():
if io.input_bool ("Use saved session? (y/n skip:y) : ", True):
try:
with open( str(self.converter_session_filepath), "rb") as f:
@ -276,10 +285,19 @@ class ConvertSubprocessor(Subprocessor):
if frames_equal:
io.log_info ('Using saved session from ' + '/'.join (self.converter_session_filepath.parts[-2:]) )
for frame in s_frames:
if frame.cfg is not None:
#recreate ConverterConfig class using constructor with get_config() as dict params
#so if any new param will be added, old converter session will work properly
frame.cfg = frame.cfg.__class__( **frame.cfg.get_config() )
self.frames = s_frames
self.frames_idxs = s_frames_idxs
self.frames_done_idxs = s_frames_done_idxs
if self.model_iter != s_model_iter:
#model is more trained, recompute all frames
for frame in self.frames:
@ -288,7 +306,7 @@ class ConvertSubprocessor(Subprocessor):
if self.model_iter != s_model_iter or \
len(self.frames_idxs) == 0:
#rewind to begin if model is more trained or all frames are done
while len(self.frames_done_idxs) > 0:
prev_frame = self.frames[self.frames_done_idxs.pop()]
self.frames_idxs.insert(0, prev_frame.idx)
@ -367,7 +385,7 @@ class ConvertSubprocessor(Subprocessor):
io.log_info ("Session is saved to " + '/'.join (self.converter_session_filepath.parts[-2:]) )
cfg_change_keys = ['`','1', '2', '3', '4', '5', '6', '7', '8', '9',
'q', 'a', 'w', 's', 'e', 'd', 'r', 'f', 't', 'g','y','h','u','j',
'q', 'a', 'w', 's', 'e', 'd', 'r', 'f', 'y','h','u','j','i','k','o','l','p', ';',':',#'t', 'g',
'z', 'x', 'c', 'v', 'b','n' ]
#override
def on_tick(self):
@ -447,10 +465,6 @@ class ConvertSubprocessor(Subprocessor):
cfg.add_motion_blur_power(1 if not shift_pressed else 5)
elif chr_key == 'f':
cfg.add_motion_blur_power(-1 if not shift_pressed else -5)
elif chr_key == 't':
cfg.add_color_degrade_power(1 if not shift_pressed else 5)
elif chr_key == 'g':
cfg.add_color_degrade_power(-1 if not shift_pressed else -5)
elif chr_key == 'y':
cfg.add_blursharpen_amount(1 if not shift_pressed else 5)
elif chr_key == 'h':
@ -459,6 +473,21 @@ class ConvertSubprocessor(Subprocessor):
cfg.add_output_face_scale(1 if not shift_pressed else 5)
elif chr_key == 'j':
cfg.add_output_face_scale(-1 if not shift_pressed else -5)
elif chr_key == 'i':
cfg.add_image_denoise_power(1 if not shift_pressed else 5)
elif chr_key == 'k':
cfg.add_image_denoise_power(-1 if not shift_pressed else -5)
elif chr_key == 'o':
cfg.add_bicubic_degrade_power(1 if not shift_pressed else 5)
elif chr_key == 'l':
cfg.add_bicubic_degrade_power(-1 if not shift_pressed else -5)
elif chr_key == 'p':
cfg.add_color_degrade_power(1 if not shift_pressed else 5)
elif chr_key == ';':
cfg.add_color_degrade_power(-1)
elif chr_key == ':':
cfg.add_color_degrade_power(-5)
elif chr_key == 'z':
cfg.toggle_masked_hist_match()
@ -579,7 +608,7 @@ class ConvertSubprocessor(Subprocessor):
for i in range ( min(len(self.frames_idxs), self.prefetch_frame_count) ):
frame = self.frames[ self.frames_idxs[i] ]
if not frame.is_done and not frame.is_processing and frame.cfg is not None:
if not frame.is_done and not frame.is_processing and frame.cfg is not None:
frame.is_processing = True
return ConvertSubprocessor.ProcessingFrame(idx=frame.idx,
cfg=frame.cfg.copy(),
@ -623,7 +652,7 @@ def main (args, device_args):
import models
model = models.import_model( args['model_name'])(model_path, device_args=device_args, training_data_src_path=training_data_src_path)
converter_session_filepath = model.get_strpath_storage_for_file('converter_session.dat')
converter_session_filepath = model.get_strpath_storage_for_file('converter_session.dat')
predictor_func, predictor_input_shape, cfg = model.get_ConverterConfig()
if not is_interactive:
@ -750,8 +779,8 @@ def main (args, device_args):
is_interactive = is_interactive,
converter_session_filepath = converter_session_filepath,
predictor_func = predictor_func,
predictor_input_shape = predictor_input_shape,
converter_config = cfg,
predictor_input_shape = predictor_input_shape,
converter_config = cfg,
frames = frames,
output_path = output_path,
model_iter = model.get_iter()