mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-20 21:43:21 -07:00
added 'sort by vggface': sorting by face similarity using VGGFace model.
Requires 4GB+ VRAM and internet connection for the first run.
This commit is contained in:
parent
0d3b25812d
commit
734d97d729
8 changed files with 186 additions and 43 deletions
|
@ -162,10 +162,6 @@ class FUNIT(object):
|
|||
for w in weights_list:
|
||||
K.set_value( w, K.get_value(initer(K.int_shape(w))) )
|
||||
|
||||
#if not self.is_first_run():
|
||||
# self.load_weights_safe(self.get_model_filename_list())
|
||||
|
||||
|
||||
|
||||
if load_weights_locally:
|
||||
pass
|
||||
|
@ -188,9 +184,6 @@ class FUNIT(object):
|
|||
[self.D_opt, 'D_opt.h5'],
|
||||
]
|
||||
|
||||
#def save_weights(self):
|
||||
# self.model.save_weights (str(self.weights_path))
|
||||
|
||||
def train(self, xa,la,xb,lb):
|
||||
D_loss, = self.D_train ([xa,la,xb,lb])
|
||||
G_loss, = self.G_train ([xa,la,xb,lb])
|
||||
|
@ -209,17 +202,17 @@ class FUNIT(object):
|
|||
def ResBlock(dim):
|
||||
def func(input):
|
||||
x = input
|
||||
x = Conv2D(dim, 3, strides=1, padding='valid')(ZeroPadding2D(1)(x))
|
||||
x = Conv2D(dim, 3, strides=1, padding='same')(x)
|
||||
x = InstanceNormalization()(x)
|
||||
x = ReLU()(x)
|
||||
x = Conv2D(dim, 3, strides=1, padding='valid')(ZeroPadding2D(1)(x))
|
||||
x = Conv2D(dim, 3, strides=1, padding='same')(x)
|
||||
x = InstanceNormalization()(x)
|
||||
|
||||
return Add()([x,input])
|
||||
return func
|
||||
|
||||
def func(x):
|
||||
x = Conv2D (nf, kernel_size=7, strides=1, padding='valid')(ZeroPadding2D(3)(x))
|
||||
x = Conv2D (nf, kernel_size=7, strides=1, padding='same')(x)
|
||||
x = InstanceNormalization()(x)
|
||||
x = ReLU()(x)
|
||||
for i in range(downs):
|
||||
|
@ -237,11 +230,11 @@ class FUNIT(object):
|
|||
exec (nnlib.import_all(), locals(), globals())
|
||||
|
||||
def func(x):
|
||||
x = Conv2D (nf, kernel_size=7, strides=1, padding='valid', activation='relu')(ZeroPadding2D(3)(x))
|
||||
x = Conv2D (nf, kernel_size=7, strides=1, padding='same', activation='relu')(x)
|
||||
for i in range(downs):
|
||||
x = Conv2D (nf * min ( 4, 2**(i+1) ), kernel_size=4, strides=2, padding='valid', activation='relu')(ZeroPadding2D(1)(x))
|
||||
x = GlobalAveragePooling2D()(x)
|
||||
x = Dense(nf)(x)
|
||||
x = Dense(latent_dim)(x)
|
||||
return x
|
||||
|
||||
return func
|
||||
|
@ -250,16 +243,14 @@ class FUNIT(object):
|
|||
def DecoderFlow(ups, n_res_blks=2, mlp_blks=2, subpixel_decoder=False ):
|
||||
exec (nnlib.import_all(), locals(), globals())
|
||||
|
||||
|
||||
|
||||
def ResBlock(dim):
|
||||
def func(input):
|
||||
inp, mlp = input
|
||||
x = inp
|
||||
x = Conv2D(dim, 3, strides=1, padding='valid')(ZeroPadding2D(1)(x))
|
||||
x = Conv2D(dim, 3, strides=1, padding='same')(x)
|
||||
x = FUNITAdain(kernel_initializer='he_normal')([x,mlp])
|
||||
x = ReLU()(x)
|
||||
x = Conv2D(dim, 3, strides=1, padding='valid')(ZeroPadding2D(1)(x))
|
||||
x = Conv2D(dim, 3, strides=1, padding='same')(x)
|
||||
x = FUNITAdain(kernel_initializer='he_normal')([x,mlp])
|
||||
return Add()([x,inp])
|
||||
return func
|
||||
|
@ -280,16 +271,16 @@ class FUNIT(object):
|
|||
for i in range(ups):
|
||||
|
||||
if subpixel_decoder:
|
||||
x = Conv2D (4* (nf // 2**(i+1)), kernel_size=3, strides=1, padding='valid')(ZeroPadding2D(1)(x))
|
||||
x = Conv2D (4* (nf // 2**(i+1)), kernel_size=3, strides=1, padding='same')(x)
|
||||
x = SubpixelUpscaler()(x)
|
||||
else:
|
||||
x = UpSampling2D()(x)
|
||||
x = Conv2D (nf // 2**(i+1), kernel_size=5, strides=1, padding='valid')(ZeroPadding2D(2)(x))
|
||||
x = Conv2D (nf // 2**(i+1), kernel_size=5, strides=1, padding='same')(x)
|
||||
|
||||
x = InstanceNormalization()(x)
|
||||
x = ReLU()(x)
|
||||
|
||||
rgb = Conv2D (3, kernel_size=7, strides=1, padding='valid', activation='tanh')(ZeroPadding2D(3)(x))
|
||||
rgb = Conv2D (3, kernel_size=7, strides=1, padding='same', activation='tanh')(x)
|
||||
return rgb
|
||||
|
||||
return func
|
||||
|
|
64
nnlib/VGGFace.py
Normal file
64
nnlib/VGGFace.py
Normal file
|
@ -0,0 +1,64 @@
|
|||
from nnlib import nnlib
|
||||
|
||||
def VGGFace():
|
||||
exec(nnlib.import_all(), locals(), globals())
|
||||
|
||||
img_input = Input(shape=(224,224,3) )
|
||||
|
||||
# Block 1
|
||||
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='conv1_1')(
|
||||
img_input)
|
||||
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='conv1_2')(x)
|
||||
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool1')(x)
|
||||
|
||||
# Block 2
|
||||
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='conv2_1')(
|
||||
x)
|
||||
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='conv2_2')(
|
||||
x)
|
||||
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool2')(x)
|
||||
|
||||
# Block 3
|
||||
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='conv3_1')(
|
||||
x)
|
||||
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='conv3_2')(
|
||||
x)
|
||||
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='conv3_3')(
|
||||
x)
|
||||
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool3')(x)
|
||||
|
||||
# Block 4
|
||||
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv4_1')(
|
||||
x)
|
||||
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv4_2')(
|
||||
x)
|
||||
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv4_3')(
|
||||
x)
|
||||
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool4')(x)
|
||||
|
||||
# Block 5
|
||||
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv5_1')(
|
||||
x)
|
||||
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv5_2')(
|
||||
x)
|
||||
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv5_3')(
|
||||
x)
|
||||
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool5')(x)
|
||||
|
||||
|
||||
# Classification block
|
||||
x = Flatten(name='flatten')(x)
|
||||
x = Dense(4096, name='fc6')(x)
|
||||
x = Activation('relu', name='fc6/relu')(x)
|
||||
x = Dense(4096, name='fc7')(x)
|
||||
x = Activation('relu', name='fc7/relu')(x)
|
||||
x = Dense(2622, name='fc8')(x)
|
||||
x = Activation('softmax', name='fc8/softmax')(x)
|
||||
|
||||
model = Model(img_input, x, name='vggface_vgg16')
|
||||
weights_path = keras.utils.data_utils.get_file('rcmalli_vggface_tf_vgg16.h5',
|
||||
'https://github.com/rcmalli/keras-vggface/releases/download/v2.0/rcmalli_vggface_tf_vgg16.h5')
|
||||
|
||||
model.load_weights(weights_path, by_name=True)
|
||||
|
||||
return model
|
|
@ -1,3 +1,4 @@
|
|||
from .nnlib import nnlib
|
||||
from .FUNIT import FUNIT
|
||||
from .TernausNet import TernausNet
|
||||
from .TernausNet import TernausNet
|
||||
from .VGGFace import VGGFace
|
|
@ -63,6 +63,7 @@ UpSampling2D = KL.UpSampling2D
|
|||
BatchNormalization = KL.BatchNormalization
|
||||
PixelNormalization = nnlib.PixelNormalization
|
||||
|
||||
Activation = KL.Activation
|
||||
LeakyReLU = KL.LeakyReLU
|
||||
ELU = KL.ELU
|
||||
ReLU = KL.ReLU
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue