added support of AMD videocards

added Intel's plaidML backend to use OpenCL engine. Check new requirements.
smart choosing of backend in device.py
env var 'force_plaidML' can be choosed to forced using plaidML
all tf functions transferred to pure keras
MTCNN transferred to pure keras, but it works slow on plaidML (forced to CPU in this case)
default batch size for all models and VRAMs now 4, feel free to adjust it on your own
SAE: default style options now ZERO, because there are no best values for all scenes, set them on your own.
SAE: return back option pixel_loss, feel free to enable it on your own.
SAE: added option multiscale_decoder default is true, but you can disable it to get 100% same as H,DF,LIAEF model behaviour.
fix converter output to .png
added linux fork reference to doc/doc_build_and_repository_info.md
This commit is contained in:
iperov 2019-02-19 17:33:12 +04:00
parent 3a9d450281
commit 72ba6b103c
24 changed files with 2694 additions and 1489 deletions

View file

@ -3,15 +3,11 @@ import os
import cv2
from pathlib import Path
from .mtcnn import *
from nnlib import nnlib
class MTCExtractor(object):
def __init__(self, keras, tf, tf_session):
def __init__(self):
self.scale_to = 1920
self.keras = keras
self.tf = tf
self.tf_session = tf_session
self.min_face_size = self.scale_to * 0.042
self.thresh1 = 0.7
@ -19,25 +15,72 @@ class MTCExtractor(object):
self.thresh3 = 0.6
self.scale_factor = 0.95
exec( nnlib.import_all(), locals(), globals() )
PNet_Input = Input ( (None, None,3) )
x = PNet_Input
x = Conv2D (10, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv1")(x)
x = PReLU (shared_axes=[1,2], name="PReLU1" )(x)
x = MaxPooling2D( pool_size=(2,2), strides=(2,2), padding='same' ) (x)
x = Conv2D (16, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv2")(x)
x = PReLU (shared_axes=[1,2], name="PReLU2" )(x)
x = Conv2D (32, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv3")(x)
x = PReLU (shared_axes=[1,2], name="PReLU3" )(x)
prob = Conv2D (2, kernel_size=(1,1), strides=(1,1), padding='valid', name="conv41")(x)
prob = Softmax()(prob)
x = Conv2D (4, kernel_size=(1,1), strides=(1,1), padding='valid', name="conv42")(x)
PNet_model = Model(PNet_Input, [x,prob] )
PNet_model.load_weights ( (Path(__file__).parent / 'mtcnn_pnet.h5').__str__() )
RNet_Input = Input ( (24, 24, 3) )
x = RNet_Input
x = Conv2D (28, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv1")(x)
x = PReLU (shared_axes=[1,2], name="prelu1" )(x)
x = MaxPooling2D( pool_size=(3,3), strides=(2,2), padding='same' ) (x)
x = Conv2D (48, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv2")(x)
x = PReLU (shared_axes=[1,2], name="prelu2" )(x)
x = MaxPooling2D( pool_size=(3,3), strides=(2,2), padding='valid' ) (x)
x = Conv2D (64, kernel_size=(2,2), strides=(1,1), padding='valid', name="conv3")(x)
x = PReLU (shared_axes=[1,2], name="prelu3" )(x)
x = Lambda ( lambda x: K.reshape (x, (-1, np.prod(K.int_shape(x)[1:]),) ), output_shape=(np.prod(K.int_shape(x)[1:]),) ) (x)
x = Dense (128, name='conv4')(x)
x = PReLU (name="prelu4" )(x)
prob = Dense (2, name='conv51')(x)
prob = Softmax()(prob)
x = Dense (4, name='conv52')(x)
RNet_model = Model(RNet_Input, [x,prob] )
RNet_model.load_weights ( (Path(__file__).parent / 'mtcnn_rnet.h5').__str__() )
ONet_Input = Input ( (48, 48, 3) )
x = ONet_Input
x = Conv2D (32, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv1")(x)
x = PReLU (shared_axes=[1,2], name="prelu1" )(x)
x = MaxPooling2D( pool_size=(3,3), strides=(2,2), padding='same' ) (x)
x = Conv2D (64, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv2")(x)
x = PReLU (shared_axes=[1,2], name="prelu2" )(x)
x = MaxPooling2D( pool_size=(3,3), strides=(2,2), padding='valid' ) (x)
x = Conv2D (64, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv3")(x)
x = PReLU (shared_axes=[1,2], name="prelu3" )(x)
x = MaxPooling2D( pool_size=(2,2), strides=(2,2), padding='same' ) (x)
x = Conv2D (128, kernel_size=(2,2), strides=(1,1), padding='valid', name="conv4")(x)
x = PReLU (shared_axes=[1,2], name="prelu4" )(x)
x = Lambda ( lambda x: K.reshape (x, (-1, np.prod(K.int_shape(x)[1:]),) ), output_shape=(np.prod(K.int_shape(x)[1:]),) ) (x)
x = Dense (256, name='conv5')(x)
x = PReLU (name="prelu5" )(x)
prob = Dense (2, name='conv61')(x)
prob = Softmax()(prob)
x1 = Dense (4, name='conv62')(x)
x2 = Dense (10, name='conv63')(x)
ONet_model = Model(ONet_Input, [x1,x2,prob] )
ONet_model.load_weights ( (Path(__file__).parent / 'mtcnn_onet.h5').__str__() )
self.pnet_fun = K.function ( PNet_model.inputs, PNet_model.outputs )
self.rnet_fun = K.function ( RNet_model.inputs, RNet_model.outputs )
self.onet_fun = K.function ( ONet_model.inputs, ONet_model.outputs )
def __enter__(self):
with self.tf.variable_scope('pnet2'):
data = self.tf.placeholder(self.tf.float32, (None,None,None,3), 'input')
pnet2 = PNet(self.tf, {'data':data})
pnet2.load(str(Path(__file__).parent/'det1.npy'), self.tf_session)
with self.tf.variable_scope('rnet2'):
data = self.tf.placeholder(self.tf.float32, (None,24,24,3), 'input')
rnet2 = RNet(self.tf, {'data':data})
rnet2.load(str(Path(__file__).parent/'det2.npy'), self.tf_session)
with self.tf.variable_scope('onet2'):
data = self.tf.placeholder(self.tf.float32, (None,48,48,3), 'input')
onet2 = ONet(self.tf, {'data':data})
onet2.load(str(Path(__file__).parent/'det3.npy'), self.tf_session)
self.pnet_fun = self.keras.backend.function([pnet2.layers['data']],[pnet2.layers['conv4-2'], pnet2.layers['prob1']])
self.rnet_fun = self.keras.backend.function([rnet2.layers['data']],[rnet2.layers['conv5-2'], rnet2.layers['prob1']])
self.onet_fun = self.keras.backend.function([onet2.layers['data']],[onet2.layers['conv6-2'], onet2.layers['conv6-3'], onet2.layers['prob1']])
faces, pnts = detect_face ( np.zeros ( (self.scale_to, self.scale_to, 3)), self.min_face_size, self.pnet_fun, self.rnet_fun, self.onet_fun, [ self.thresh1, self.thresh2, self.thresh3 ], self.scale_factor )
return self
def __exit__(self, exc_type=None, exc_value=None, traceback=None):
@ -47,7 +90,6 @@ class MTCExtractor(object):
input_image = input_image[:,:,::-1].copy()
(h, w, ch) = input_image.shape
input_scale = self.scale_to / (w if w > h else h)
input_image = cv2.resize (input_image, ( int(w*input_scale), int(h*input_scale) ), interpolation=cv2.INTER_LINEAR)
@ -56,3 +98,249 @@ class MTCExtractor(object):
return detected_faces
def detect_face(img, minsize, pnet, rnet, onet, threshold, factor):
"""Detects faces in an image, and returns bounding boxes and points for them.
img: input image
minsize: minimum faces' size
pnet, rnet, onet: caffemodel
threshold: threshold=[th1, th2, th3], th1-3 are three steps's threshold
factor: the factor used to create a scaling pyramid of face sizes to detect in the image.
"""
factor_count=0
total_boxes=np.empty((0,9))
points=np.empty(0)
h=img.shape[0]
w=img.shape[1]
minl=np.amin([h, w])
m=12.0/minsize
minl=minl*m
# create scale pyramid
scales=[]
while minl>=12:
scales += [m*np.power(factor, factor_count)]
minl = minl*factor
factor_count += 1
# first stage
for scale in scales:
hs=int(np.ceil(h*scale))
ws=int(np.ceil(w*scale))
#print ('scale %f %d %d' % (scale, ws,hs))
im_data = imresample(img, (hs, ws))
im_data = (im_data-127.5)*0.0078125
img_x = np.expand_dims(im_data, 0)
img_y = np.transpose(img_x, (0,2,1,3))
out = pnet([img_y])
out0 = np.transpose(out[0], (0,2,1,3))
out1 = np.transpose(out[1], (0,2,1,3))
boxes, _ = generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0])
# inter-scale nms
pick = nms(boxes.copy(), 0.5, 'Union')
if boxes.size>0 and pick.size>0:
boxes = boxes[pick,:]
total_boxes = np.append(total_boxes, boxes, axis=0)
numbox = total_boxes.shape[0]
if numbox>0:
pick = nms(total_boxes.copy(), 0.7, 'Union')
total_boxes = total_boxes[pick,:]
regw = total_boxes[:,2]-total_boxes[:,0]
regh = total_boxes[:,3]-total_boxes[:,1]
qq1 = total_boxes[:,0]+total_boxes[:,5]*regw
qq2 = total_boxes[:,1]+total_boxes[:,6]*regh
qq3 = total_boxes[:,2]+total_boxes[:,7]*regw
qq4 = total_boxes[:,3]+total_boxes[:,8]*regh
total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]]))
total_boxes = rerec(total_boxes.copy())
total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)
numbox = total_boxes.shape[0]
if numbox>0:
# second stage
tempimg = np.zeros((24,24,3,numbox))
for k in range(0,numbox):
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
tempimg[:,:,:,k] = imresample(tmp, (24, 24))
else:
return np.empty()
tempimg = (tempimg-127.5)*0.0078125
tempimg1 = np.transpose(tempimg, (3,1,0,2))
out = rnet([tempimg1])
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
score = out1[1,:]
ipass = np.where(score>threshold[1])
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
mv = out0[:,ipass[0]]
if total_boxes.shape[0]>0:
pick = nms(total_boxes, 0.7, 'Union')
total_boxes = total_boxes[pick,:]
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:,pick]))
total_boxes = rerec(total_boxes.copy())
numbox = total_boxes.shape[0]
if numbox>0:
# third stage
total_boxes = np.fix(total_boxes).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)
tempimg = np.zeros((48,48,3,numbox))
for k in range(0,numbox):
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
tempimg[:,:,:,k] = imresample(tmp, (48, 48))
else:
return np.empty()
tempimg = (tempimg-127.5)*0.0078125
tempimg1 = np.transpose(tempimg, (3,1,0,2))
out = onet([tempimg1])
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
out2 = np.transpose(out[2])
score = out2[1,:]
points = out1
ipass = np.where(score>threshold[2])
points = points[:,ipass[0]]
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
mv = out0[:,ipass[0]]
w = total_boxes[:,2]-total_boxes[:,0]+1
h = total_boxes[:,3]-total_boxes[:,1]+1
points[0:5,:] = np.tile(w,(5, 1))*points[0:5,:] + np.tile(total_boxes[:,0],(5, 1))-1
points[5:10,:] = np.tile(h,(5, 1))*points[5:10,:] + np.tile(total_boxes[:,1],(5, 1))-1
if total_boxes.shape[0]>0:
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv))
pick = nms(total_boxes.copy(), 0.7, 'Min')
total_boxes = total_boxes[pick,:]
points = points[:,pick]
return total_boxes, points
# function [boundingbox] = bbreg(boundingbox,reg)
def bbreg(boundingbox,reg):
"""Calibrate bounding boxes"""
if reg.shape[1]==1:
reg = np.reshape(reg, (reg.shape[2], reg.shape[3]))
w = boundingbox[:,2]-boundingbox[:,0]+1
h = boundingbox[:,3]-boundingbox[:,1]+1
b1 = boundingbox[:,0]+reg[:,0]*w
b2 = boundingbox[:,1]+reg[:,1]*h
b3 = boundingbox[:,2]+reg[:,2]*w
b4 = boundingbox[:,3]+reg[:,3]*h
boundingbox[:,0:4] = np.transpose(np.vstack([b1, b2, b3, b4 ]))
return boundingbox
def generateBoundingBox(imap, reg, scale, t):
"""Use heatmap to generate bounding boxes"""
stride=2
cellsize=12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0]==1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size==0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def nms(boxes, threshold, method):
if boxes.size==0:
return np.empty((0,3))
x1 = boxes[:,0]
y1 = boxes[:,1]
x2 = boxes[:,2]
y2 = boxes[:,3]
s = boxes[:,4]
area = (x2-x1+1) * (y2-y1+1)
I = np.argsort(s)
pick = np.zeros_like(s, dtype=np.int16)
counter = 0
while I.size>0:
i = I[-1]
pick[counter] = i
counter += 1
idx = I[0:-1]
xx1 = np.maximum(x1[i], x1[idx])
yy1 = np.maximum(y1[i], y1[idx])
xx2 = np.minimum(x2[i], x2[idx])
yy2 = np.minimum(y2[i], y2[idx])
w = np.maximum(0.0, xx2-xx1+1)
h = np.maximum(0.0, yy2-yy1+1)
inter = w * h
if method is 'Min':
o = inter / np.minimum(area[i], area[idx])
else:
o = inter / (area[i] + area[idx] - inter)
I = I[np.where(o<=threshold)]
pick = pick[0:counter]
return pick
# function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h)
def pad(total_boxes, w, h):
"""Compute the padding coordinates (pad the bounding boxes to square)"""
tmpw = (total_boxes[:,2]-total_boxes[:,0]+1).astype(np.int32)
tmph = (total_boxes[:,3]-total_boxes[:,1]+1).astype(np.int32)
numbox = total_boxes.shape[0]
dx = np.ones((numbox), dtype=np.int32)
dy = np.ones((numbox), dtype=np.int32)
edx = tmpw.copy().astype(np.int32)
edy = tmph.copy().astype(np.int32)
x = total_boxes[:,0].copy().astype(np.int32)
y = total_boxes[:,1].copy().astype(np.int32)
ex = total_boxes[:,2].copy().astype(np.int32)
ey = total_boxes[:,3].copy().astype(np.int32)
tmp = np.where(ex>w)
edx.flat[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],1)
ex[tmp] = w
tmp = np.where(ey>h)
edy.flat[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],1)
ey[tmp] = h
tmp = np.where(x<1)
dx.flat[tmp] = np.expand_dims(2-x[tmp],1)
x[tmp] = 1
tmp = np.where(y<1)
dy.flat[tmp] = np.expand_dims(2-y[tmp],1)
y[tmp] = 1
return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph
# function [bboxA] = rerec(bboxA)
def rerec(bboxA):
"""Convert bboxA to square."""
h = bboxA[:,3]-bboxA[:,1]
w = bboxA[:,2]-bboxA[:,0]
l = np.maximum(w, h)
bboxA[:,0] = bboxA[:,0]+w*0.5-l*0.5
bboxA[:,1] = bboxA[:,1]+h*0.5-l*0.5
bboxA[:,2:4] = bboxA[:,0:2] + np.transpose(np.tile(l,(2,1)))
return bboxA
def imresample(img, sz):
im_data = cv2.resize(img, (sz[1], sz[0]), interpolation=cv2.INTER_LINEAR) #@UndefinedVariable
return im_data