added support of AMD videocards

added Intel's plaidML backend to use OpenCL engine. Check new requirements.
smart choosing of backend in device.py
env var 'force_plaidML' can be choosed to forced using plaidML
all tf functions transferred to pure keras
MTCNN transferred to pure keras, but it works slow on plaidML (forced to CPU in this case)
default batch size for all models and VRAMs now 4, feel free to adjust it on your own
SAE: default style options now ZERO, because there are no best values for all scenes, set them on your own.
SAE: return back option pixel_loss, feel free to enable it on your own.
SAE: added option multiscale_decoder default is true, but you can disable it to get 100% same as H,DF,LIAEF model behaviour.
fix converter output to .png
added linux fork reference to doc/doc_build_and_repository_info.md
This commit is contained in:
iperov 2019-02-19 17:33:12 +04:00
commit 72ba6b103c
24 changed files with 2694 additions and 1489 deletions

View file

@ -3,15 +3,11 @@ import os
import cv2
from pathlib import Path
from .mtcnn import *
from nnlib import nnlib
class MTCExtractor(object):
def __init__(self, keras, tf, tf_session):
def __init__(self):
self.scale_to = 1920
self.keras = keras
self.tf = tf
self.tf_session = tf_session
self.min_face_size = self.scale_to * 0.042
self.thresh1 = 0.7
@ -19,25 +15,72 @@ class MTCExtractor(object):
self.thresh3 = 0.6
self.scale_factor = 0.95
exec( nnlib.import_all(), locals(), globals() )
PNet_Input = Input ( (None, None,3) )
x = PNet_Input
x = Conv2D (10, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv1")(x)
x = PReLU (shared_axes=[1,2], name="PReLU1" )(x)
x = MaxPooling2D( pool_size=(2,2), strides=(2,2), padding='same' ) (x)
x = Conv2D (16, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv2")(x)
x = PReLU (shared_axes=[1,2], name="PReLU2" )(x)
x = Conv2D (32, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv3")(x)
x = PReLU (shared_axes=[1,2], name="PReLU3" )(x)
prob = Conv2D (2, kernel_size=(1,1), strides=(1,1), padding='valid', name="conv41")(x)
prob = Softmax()(prob)
x = Conv2D (4, kernel_size=(1,1), strides=(1,1), padding='valid', name="conv42")(x)
PNet_model = Model(PNet_Input, [x,prob] )
PNet_model.load_weights ( (Path(__file__).parent / 'mtcnn_pnet.h5').__str__() )
RNet_Input = Input ( (24, 24, 3) )
x = RNet_Input
x = Conv2D (28, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv1")(x)
x = PReLU (shared_axes=[1,2], name="prelu1" )(x)
x = MaxPooling2D( pool_size=(3,3), strides=(2,2), padding='same' ) (x)
x = Conv2D (48, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv2")(x)
x = PReLU (shared_axes=[1,2], name="prelu2" )(x)
x = MaxPooling2D( pool_size=(3,3), strides=(2,2), padding='valid' ) (x)
x = Conv2D (64, kernel_size=(2,2), strides=(1,1), padding='valid', name="conv3")(x)
x = PReLU (shared_axes=[1,2], name="prelu3" )(x)
x = Lambda ( lambda x: K.reshape (x, (-1, np.prod(K.int_shape(x)[1:]),) ), output_shape=(np.prod(K.int_shape(x)[1:]),) ) (x)
x = Dense (128, name='conv4')(x)
x = PReLU (name="prelu4" )(x)
prob = Dense (2, name='conv51')(x)
prob = Softmax()(prob)
x = Dense (4, name='conv52')(x)
RNet_model = Model(RNet_Input, [x,prob] )
RNet_model.load_weights ( (Path(__file__).parent / 'mtcnn_rnet.h5').__str__() )
ONet_Input = Input ( (48, 48, 3) )
x = ONet_Input
x = Conv2D (32, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv1")(x)
x = PReLU (shared_axes=[1,2], name="prelu1" )(x)
x = MaxPooling2D( pool_size=(3,3), strides=(2,2), padding='same' ) (x)
x = Conv2D (64, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv2")(x)
x = PReLU (shared_axes=[1,2], name="prelu2" )(x)
x = MaxPooling2D( pool_size=(3,3), strides=(2,2), padding='valid' ) (x)
x = Conv2D (64, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv3")(x)
x = PReLU (shared_axes=[1,2], name="prelu3" )(x)
x = MaxPooling2D( pool_size=(2,2), strides=(2,2), padding='same' ) (x)
x = Conv2D (128, kernel_size=(2,2), strides=(1,1), padding='valid', name="conv4")(x)
x = PReLU (shared_axes=[1,2], name="prelu4" )(x)
x = Lambda ( lambda x: K.reshape (x, (-1, np.prod(K.int_shape(x)[1:]),) ), output_shape=(np.prod(K.int_shape(x)[1:]),) ) (x)
x = Dense (256, name='conv5')(x)
x = PReLU (name="prelu5" )(x)
prob = Dense (2, name='conv61')(x)
prob = Softmax()(prob)
x1 = Dense (4, name='conv62')(x)
x2 = Dense (10, name='conv63')(x)
ONet_model = Model(ONet_Input, [x1,x2,prob] )
ONet_model.load_weights ( (Path(__file__).parent / 'mtcnn_onet.h5').__str__() )
self.pnet_fun = K.function ( PNet_model.inputs, PNet_model.outputs )
self.rnet_fun = K.function ( RNet_model.inputs, RNet_model.outputs )
self.onet_fun = K.function ( ONet_model.inputs, ONet_model.outputs )
def __enter__(self):
with self.tf.variable_scope('pnet2'):
data = self.tf.placeholder(self.tf.float32, (None,None,None,3), 'input')
pnet2 = PNet(self.tf, {'data':data})
pnet2.load(str(Path(__file__).parent/'det1.npy'), self.tf_session)
with self.tf.variable_scope('rnet2'):
data = self.tf.placeholder(self.tf.float32, (None,24,24,3), 'input')
rnet2 = RNet(self.tf, {'data':data})
rnet2.load(str(Path(__file__).parent/'det2.npy'), self.tf_session)
with self.tf.variable_scope('onet2'):
data = self.tf.placeholder(self.tf.float32, (None,48,48,3), 'input')
onet2 = ONet(self.tf, {'data':data})
onet2.load(str(Path(__file__).parent/'det3.npy'), self.tf_session)
self.pnet_fun = self.keras.backend.function([pnet2.layers['data']],[pnet2.layers['conv4-2'], pnet2.layers['prob1']])
self.rnet_fun = self.keras.backend.function([rnet2.layers['data']],[rnet2.layers['conv5-2'], rnet2.layers['prob1']])
self.onet_fun = self.keras.backend.function([onet2.layers['data']],[onet2.layers['conv6-2'], onet2.layers['conv6-3'], onet2.layers['prob1']])
faces, pnts = detect_face ( np.zeros ( (self.scale_to, self.scale_to, 3)), self.min_face_size, self.pnet_fun, self.rnet_fun, self.onet_fun, [ self.thresh1, self.thresh2, self.thresh3 ], self.scale_factor )
return self
def __exit__(self, exc_type=None, exc_value=None, traceback=None):
@ -47,7 +90,6 @@ class MTCExtractor(object):
input_image = input_image[:,:,::-1].copy()
(h, w, ch) = input_image.shape
input_scale = self.scale_to / (w if w > h else h)
input_image = cv2.resize (input_image, ( int(w*input_scale), int(h*input_scale) ), interpolation=cv2.INTER_LINEAR)
@ -56,3 +98,249 @@ class MTCExtractor(object):
return detected_faces
def detect_face(img, minsize, pnet, rnet, onet, threshold, factor):
"""Detects faces in an image, and returns bounding boxes and points for them.
img: input image
minsize: minimum faces' size
pnet, rnet, onet: caffemodel
threshold: threshold=[th1, th2, th3], th1-3 are three steps's threshold
factor: the factor used to create a scaling pyramid of face sizes to detect in the image.
"""
factor_count=0
total_boxes=np.empty((0,9))
points=np.empty(0)
h=img.shape[0]
w=img.shape[1]
minl=np.amin([h, w])
m=12.0/minsize
minl=minl*m
# create scale pyramid
scales=[]
while minl>=12:
scales += [m*np.power(factor, factor_count)]
minl = minl*factor
factor_count += 1
# first stage
for scale in scales:
hs=int(np.ceil(h*scale))
ws=int(np.ceil(w*scale))
#print ('scale %f %d %d' % (scale, ws,hs))
im_data = imresample(img, (hs, ws))
im_data = (im_data-127.5)*0.0078125
img_x = np.expand_dims(im_data, 0)
img_y = np.transpose(img_x, (0,2,1,3))
out = pnet([img_y])
out0 = np.transpose(out[0], (0,2,1,3))
out1 = np.transpose(out[1], (0,2,1,3))
boxes, _ = generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0])
# inter-scale nms
pick = nms(boxes.copy(), 0.5, 'Union')
if boxes.size>0 and pick.size>0:
boxes = boxes[pick,:]
total_boxes = np.append(total_boxes, boxes, axis=0)
numbox = total_boxes.shape[0]
if numbox>0:
pick = nms(total_boxes.copy(), 0.7, 'Union')
total_boxes = total_boxes[pick,:]
regw = total_boxes[:,2]-total_boxes[:,0]
regh = total_boxes[:,3]-total_boxes[:,1]
qq1 = total_boxes[:,0]+total_boxes[:,5]*regw
qq2 = total_boxes[:,1]+total_boxes[:,6]*regh
qq3 = total_boxes[:,2]+total_boxes[:,7]*regw
qq4 = total_boxes[:,3]+total_boxes[:,8]*regh
total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]]))
total_boxes = rerec(total_boxes.copy())
total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)
numbox = total_boxes.shape[0]
if numbox>0:
# second stage
tempimg = np.zeros((24,24,3,numbox))
for k in range(0,numbox):
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
tempimg[:,:,:,k] = imresample(tmp, (24, 24))
else:
return np.empty()
tempimg = (tempimg-127.5)*0.0078125
tempimg1 = np.transpose(tempimg, (3,1,0,2))
out = rnet([tempimg1])
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
score = out1[1,:]
ipass = np.where(score>threshold[1])
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
mv = out0[:,ipass[0]]
if total_boxes.shape[0]>0:
pick = nms(total_boxes, 0.7, 'Union')
total_boxes = total_boxes[pick,:]
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:,pick]))
total_boxes = rerec(total_boxes.copy())
numbox = total_boxes.shape[0]
if numbox>0:
# third stage
total_boxes = np.fix(total_boxes).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)
tempimg = np.zeros((48,48,3,numbox))
for k in range(0,numbox):
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
tempimg[:,:,:,k] = imresample(tmp, (48, 48))
else:
return np.empty()
tempimg = (tempimg-127.5)*0.0078125
tempimg1 = np.transpose(tempimg, (3,1,0,2))
out = onet([tempimg1])
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
out2 = np.transpose(out[2])
score = out2[1,:]
points = out1
ipass = np.where(score>threshold[2])
points = points[:,ipass[0]]
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
mv = out0[:,ipass[0]]
w = total_boxes[:,2]-total_boxes[:,0]+1
h = total_boxes[:,3]-total_boxes[:,1]+1
points[0:5,:] = np.tile(w,(5, 1))*points[0:5,:] + np.tile(total_boxes[:,0],(5, 1))-1
points[5:10,:] = np.tile(h,(5, 1))*points[5:10,:] + np.tile(total_boxes[:,1],(5, 1))-1
if total_boxes.shape[0]>0:
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv))
pick = nms(total_boxes.copy(), 0.7, 'Min')
total_boxes = total_boxes[pick,:]
points = points[:,pick]
return total_boxes, points
# function [boundingbox] = bbreg(boundingbox,reg)
def bbreg(boundingbox,reg):
"""Calibrate bounding boxes"""
if reg.shape[1]==1:
reg = np.reshape(reg, (reg.shape[2], reg.shape[3]))
w = boundingbox[:,2]-boundingbox[:,0]+1
h = boundingbox[:,3]-boundingbox[:,1]+1
b1 = boundingbox[:,0]+reg[:,0]*w
b2 = boundingbox[:,1]+reg[:,1]*h
b3 = boundingbox[:,2]+reg[:,2]*w
b4 = boundingbox[:,3]+reg[:,3]*h
boundingbox[:,0:4] = np.transpose(np.vstack([b1, b2, b3, b4 ]))
return boundingbox
def generateBoundingBox(imap, reg, scale, t):
"""Use heatmap to generate bounding boxes"""
stride=2
cellsize=12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0]==1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size==0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def nms(boxes, threshold, method):
if boxes.size==0:
return np.empty((0,3))
x1 = boxes[:,0]
y1 = boxes[:,1]
x2 = boxes[:,2]
y2 = boxes[:,3]
s = boxes[:,4]
area = (x2-x1+1) * (y2-y1+1)
I = np.argsort(s)
pick = np.zeros_like(s, dtype=np.int16)
counter = 0
while I.size>0:
i = I[-1]
pick[counter] = i
counter += 1
idx = I[0:-1]
xx1 = np.maximum(x1[i], x1[idx])
yy1 = np.maximum(y1[i], y1[idx])
xx2 = np.minimum(x2[i], x2[idx])
yy2 = np.minimum(y2[i], y2[idx])
w = np.maximum(0.0, xx2-xx1+1)
h = np.maximum(0.0, yy2-yy1+1)
inter = w * h
if method is 'Min':
o = inter / np.minimum(area[i], area[idx])
else:
o = inter / (area[i] + area[idx] - inter)
I = I[np.where(o<=threshold)]
pick = pick[0:counter]
return pick
# function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h)
def pad(total_boxes, w, h):
"""Compute the padding coordinates (pad the bounding boxes to square)"""
tmpw = (total_boxes[:,2]-total_boxes[:,0]+1).astype(np.int32)
tmph = (total_boxes[:,3]-total_boxes[:,1]+1).astype(np.int32)
numbox = total_boxes.shape[0]
dx = np.ones((numbox), dtype=np.int32)
dy = np.ones((numbox), dtype=np.int32)
edx = tmpw.copy().astype(np.int32)
edy = tmph.copy().astype(np.int32)
x = total_boxes[:,0].copy().astype(np.int32)
y = total_boxes[:,1].copy().astype(np.int32)
ex = total_boxes[:,2].copy().astype(np.int32)
ey = total_boxes[:,3].copy().astype(np.int32)
tmp = np.where(ex>w)
edx.flat[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],1)
ex[tmp] = w
tmp = np.where(ey>h)
edy.flat[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],1)
ey[tmp] = h
tmp = np.where(x<1)
dx.flat[tmp] = np.expand_dims(2-x[tmp],1)
x[tmp] = 1
tmp = np.where(y<1)
dy.flat[tmp] = np.expand_dims(2-y[tmp],1)
y[tmp] = 1
return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph
# function [bboxA] = rerec(bboxA)
def rerec(bboxA):
"""Convert bboxA to square."""
h = bboxA[:,3]-bboxA[:,1]
w = bboxA[:,2]-bboxA[:,0]
l = np.maximum(w, h)
bboxA[:,0] = bboxA[:,0]+w*0.5-l*0.5
bboxA[:,1] = bboxA[:,1]+h*0.5-l*0.5
bboxA[:,2:4] = bboxA[:,0:2] + np.transpose(np.tile(l,(2,1)))
return bboxA
def imresample(img, sz):
im_data = cv2.resize(img, (sz[1], sz[0]), interpolation=cv2.INTER_LINEAR) #@UndefinedVariable
return im_data

Binary file not shown.

View file

@ -1,761 +0,0 @@
# Source: https://github.com/davidsandberg/facenet/blob/master/src/align/
""" Tensorflow implementation of the face detection / alignment algorithm found at
https://github.com/kpzhang93/MTCNN_face_detection_alignment
"""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six import string_types, iteritems
import numpy as np
#from math import floor
import cv2
import os
def layer(op):
"""Decorator for composable network layers."""
def layer_decorated(self, *args, **kwargs):
# Automatically set a name if not provided.
name = kwargs.setdefault('name', self.get_unique_name(op.__name__))
# Figure out the layer inputs.
if len(self.terminals) == 0:
raise RuntimeError('No input variables found for layer %s.' % name)
elif len(self.terminals) == 1:
layer_input = self.terminals[0]
else:
layer_input = list(self.terminals)
# Perform the operation and get the output.
layer_output = op(self, layer_input, *args, **kwargs)
# Add to layer LUT.
self.layers[name] = layer_output
# This output is now the input for the next layer.
self.feed(layer_output)
# Return self for chained calls.
return self
return layer_decorated
class Network(object):
def __init__(self, tf, inputs, trainable=True):
# The input nodes for this network
self.tf = tf
self.inputs = inputs
# The current list of terminal nodes
self.terminals = []
# Mapping from layer names to layers
self.layers = dict(inputs)
# If true, the resulting variables are set as trainable
self.trainable = trainable
self.setup()
def setup(self):
"""Construct the network. """
raise NotImplementedError('Must be implemented by the subclass.')
def load(self, data_path, session, ignore_missing=False):
"""Load network weights.
data_path: The path to the numpy-serialized network weights
session: The current TensorFlow session
ignore_missing: If true, serialized weights for missing layers are ignored.
"""
data_dict = np.load(data_path, encoding='latin1').item() #pylint: disable=no-member
for op_name in data_dict:
with self.tf.variable_scope(op_name, reuse=True):
for param_name, data in iteritems(data_dict[op_name]):
try:
var = self.tf.get_variable(param_name)
session.run(var.assign(data))
except ValueError:
if not ignore_missing:
raise
def feed(self, *args):
"""Set the input(s) for the next operation by replacing the terminal nodes.
The arguments can be either layer names or the actual layers.
"""
assert len(args) != 0
self.terminals = []
for fed_layer in args:
if isinstance(fed_layer, string_types):
try:
fed_layer = self.layers[fed_layer]
except KeyError:
raise KeyError('Unknown layer name fed: %s' % fed_layer)
self.terminals.append(fed_layer)
return self
def get_output(self):
"""Returns the current network output."""
return self.terminals[-1]
def get_unique_name(self, prefix):
"""Returns an index-suffixed unique name for the given prefix.
This is used for auto-generating layer names based on the type-prefix.
"""
ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1
return '%s_%d' % (prefix, ident)
def make_var(self, name, shape):
"""Creates a new TensorFlow variable."""
return self.tf.get_variable(name, shape, trainable=self.trainable)
def validate_padding(self, padding):
"""Verifies that the padding is one of the supported ones."""
assert padding in ('SAME', 'VALID')
@layer
def conv(self,
inp,
k_h,
k_w,
c_o,
s_h,
s_w,
name,
relu=True,
padding='SAME',
group=1,
biased=True):
# Verify that the padding is acceptable
self.validate_padding(padding)
# Get the number of channels in the input
c_i = int(inp.get_shape()[-1])
# Verify that the grouping parameter is valid
assert c_i % group == 0
assert c_o % group == 0
# Convolution for a given input and kernel
convolve = lambda i, k: self.tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding)
with self.tf.variable_scope(name) as scope:
kernel = self.make_var('weights', shape=[k_h, k_w, c_i // group, c_o])
# This is the common-case. Convolve the input without any further complications.
output = convolve(inp, kernel)
# Add the biases
if biased:
biases = self.make_var('biases', [c_o])
output = self.tf.nn.bias_add(output, biases)
if relu:
# ReLU non-linearity
output = self.tf.nn.relu(output, name=scope.name)
return output
@layer
def prelu(self, inp, name):
with self.tf.variable_scope(name):
i = int(inp.get_shape()[-1])
alpha = self.make_var('alpha', shape=(i,))
output = self.tf.nn.relu(inp) + self.tf.multiply(alpha, -self.tf.nn.relu(-inp))
return output
@layer
def max_pool(self, inp, k_h, k_w, s_h, s_w, name, padding='SAME'):
self.validate_padding(padding)
return self.tf.nn.max_pool(inp,
ksize=[1, k_h, k_w, 1],
strides=[1, s_h, s_w, 1],
padding=padding,
name=name)
@layer
def fc(self, inp, num_out, name, relu=True):
with self.tf.variable_scope(name):
input_shape = inp.get_shape()
if input_shape.ndims == 4:
# The input is spatial. Vectorize it first.
dim = 1
for d in input_shape[1:].as_list():
dim *= int(d)
feed_in = self.tf.reshape(inp, [-1, dim])
else:
feed_in, dim = (inp, input_shape[-1].value)
weights = self.make_var('weights', shape=[dim, num_out])
biases = self.make_var('biases', [num_out])
op = self.tf.nn.relu_layer if relu else self.tf.nn.xw_plus_b
fc = op(feed_in, weights, biases, name=name)
return fc
"""
Multi dimensional softmax,
refer to https://github.com/tensorflow/tensorflow/issues/210
compute softmax along the dimension of target
the native softmax only supports batch_size x dimension
"""
@layer
def softmax(self, target, axis, name=None):
max_axis = self.tf.reduce_max(target, axis, keepdims=True)
target_exp = self.tf.exp(target-max_axis)
normalize = self.tf.reduce_sum(target_exp, axis, keepdims=True)
softmax = self.tf.div(target_exp, normalize, name)
return softmax
class PNet(Network):
def setup(self):
(self.feed('data') #pylint: disable=no-value-for-parameter, no-member
.conv(3, 3, 10, 1, 1, padding='VALID', relu=False, name='conv1')
.prelu(name='PReLU1')
.max_pool(2, 2, 2, 2, name='pool1')
.conv(3, 3, 16, 1, 1, padding='VALID', relu=False, name='conv2')
.prelu(name='PReLU2')
.conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv3')
.prelu(name='PReLU3')
.conv(1, 1, 2, 1, 1, relu=False, name='conv4-1')
.softmax(3,name='prob1'))
(self.feed('PReLU3') #pylint: disable=no-value-for-parameter
.conv(1, 1, 4, 1, 1, relu=False, name='conv4-2'))
class RNet(Network):
def setup(self):
(self.feed('data') #pylint: disable=no-value-for-parameter, no-member
.conv(3, 3, 28, 1, 1, padding='VALID', relu=False, name='conv1')
.prelu(name='prelu1')
.max_pool(3, 3, 2, 2, name='pool1')
.conv(3, 3, 48, 1, 1, padding='VALID', relu=False, name='conv2')
.prelu(name='prelu2')
.max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
.conv(2, 2, 64, 1, 1, padding='VALID', relu=False, name='conv3')
.prelu(name='prelu3')
.fc(128, relu=False, name='conv4')
.prelu(name='prelu4')
.fc(2, relu=False, name='conv5-1')
.softmax(1,name='prob1'))
(self.feed('prelu4') #pylint: disable=no-value-for-parameter
.fc(4, relu=False, name='conv5-2'))
class ONet(Network):
def setup(self):
(self.feed('data') #pylint: disable=no-value-for-parameter, no-member
.conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv1')
.prelu(name='prelu1')
.max_pool(3, 3, 2, 2, name='pool1')
.conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv2')
.prelu(name='prelu2')
.max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
.conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv3')
.prelu(name='prelu3')
.max_pool(2, 2, 2, 2, name='pool3')
.conv(2, 2, 128, 1, 1, padding='VALID', relu=False, name='conv4')
.prelu(name='prelu4')
.fc(256, relu=False, name='conv5')
.prelu(name='prelu5')
.fc(2, relu=False, name='conv6-1')
.softmax(1, name='prob1'))
(self.feed('prelu5') #pylint: disable=no-value-for-parameter
.fc(4, relu=False, name='conv6-2'))
(self.feed('prelu5') #pylint: disable=no-value-for-parameter
.fc(10, relu=False, name='conv6-3'))
def detect_face(img, minsize, pnet, rnet, onet, threshold, factor):
"""Detects faces in an image, and returns bounding boxes and points for them.
img: input image
minsize: minimum faces' size
pnet, rnet, onet: caffemodel
threshold: threshold=[th1, th2, th3], th1-3 are three steps's threshold
factor: the factor used to create a scaling pyramid of face sizes to detect in the image.
"""
factor_count=0
total_boxes=np.empty((0,9))
points=np.empty(0)
h=img.shape[0]
w=img.shape[1]
minl=np.amin([h, w])
m=12.0/minsize
minl=minl*m
# create scale pyramid
scales=[]
while minl>=12:
scales += [m*np.power(factor, factor_count)]
minl = minl*factor
factor_count += 1
# first stage
for scale in scales:
hs=int(np.ceil(h*scale))
ws=int(np.ceil(w*scale))
#print ('scale %f %d %d' % (scale, ws,hs))
im_data = imresample(img, (hs, ws))
im_data = (im_data-127.5)*0.0078125
img_x = np.expand_dims(im_data, 0)
img_y = np.transpose(img_x, (0,2,1,3))
out = pnet([img_y])
out0 = np.transpose(out[0], (0,2,1,3))
out1 = np.transpose(out[1], (0,2,1,3))
boxes, _ = generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0])
# inter-scale nms
pick = nms(boxes.copy(), 0.5, 'Union')
if boxes.size>0 and pick.size>0:
boxes = boxes[pick,:]
total_boxes = np.append(total_boxes, boxes, axis=0)
numbox = total_boxes.shape[0]
if numbox>0:
pick = nms(total_boxes.copy(), 0.7, 'Union')
total_boxes = total_boxes[pick,:]
regw = total_boxes[:,2]-total_boxes[:,0]
regh = total_boxes[:,3]-total_boxes[:,1]
qq1 = total_boxes[:,0]+total_boxes[:,5]*regw
qq2 = total_boxes[:,1]+total_boxes[:,6]*regh
qq3 = total_boxes[:,2]+total_boxes[:,7]*regw
qq4 = total_boxes[:,3]+total_boxes[:,8]*regh
total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]]))
total_boxes = rerec(total_boxes.copy())
total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)
numbox = total_boxes.shape[0]
if numbox>0:
# second stage
tempimg = np.zeros((24,24,3,numbox))
for k in range(0,numbox):
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
tempimg[:,:,:,k] = imresample(tmp, (24, 24))
else:
return np.empty()
tempimg = (tempimg-127.5)*0.0078125
tempimg1 = np.transpose(tempimg, (3,1,0,2))
out = rnet([tempimg1])
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
score = out1[1,:]
ipass = np.where(score>threshold[1])
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
mv = out0[:,ipass[0]]
if total_boxes.shape[0]>0:
pick = nms(total_boxes, 0.7, 'Union')
total_boxes = total_boxes[pick,:]
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:,pick]))
total_boxes = rerec(total_boxes.copy())
numbox = total_boxes.shape[0]
if numbox>0:
# third stage
total_boxes = np.fix(total_boxes).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)
tempimg = np.zeros((48,48,3,numbox))
for k in range(0,numbox):
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
tempimg[:,:,:,k] = imresample(tmp, (48, 48))
else:
return np.empty()
tempimg = (tempimg-127.5)*0.0078125
tempimg1 = np.transpose(tempimg, (3,1,0,2))
out = onet([tempimg1])
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
out2 = np.transpose(out[2])
score = out2[1,:]
points = out1
ipass = np.where(score>threshold[2])
points = points[:,ipass[0]]
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
mv = out0[:,ipass[0]]
w = total_boxes[:,2]-total_boxes[:,0]+1
h = total_boxes[:,3]-total_boxes[:,1]+1
points[0:5,:] = np.tile(w,(5, 1))*points[0:5,:] + np.tile(total_boxes[:,0],(5, 1))-1
points[5:10,:] = np.tile(h,(5, 1))*points[5:10,:] + np.tile(total_boxes[:,1],(5, 1))-1
if total_boxes.shape[0]>0:
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv))
pick = nms(total_boxes.copy(), 0.7, 'Min')
total_boxes = total_boxes[pick,:]
points = points[:,pick]
return total_boxes, points
def bulk_detect_face(images, detection_window_size_ratio, pnet, rnet, onet, threshold, factor):
"""Detects faces in a list of images
images: list containing input images
detection_window_size_ratio: ratio of minimum face size to smallest image dimension
pnet, rnet, onet: caffemodel
threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold [0-1]
factor: the factor used to create a scaling pyramid of face sizes to detect in the image.
"""
all_scales = [None] * len(images)
images_with_boxes = [None] * len(images)
for i in range(len(images)):
images_with_boxes[i] = {'total_boxes': np.empty((0, 9))}
# create scale pyramid
for index, img in enumerate(images):
all_scales[index] = []
h = img.shape[0]
w = img.shape[1]
minsize = int(detection_window_size_ratio * np.minimum(w, h))
factor_count = 0
minl = np.amin([h, w])
if minsize <= 12:
minsize = 12
m = 12.0 / minsize
minl = minl * m
while minl >= 12:
all_scales[index].append(m * np.power(factor, factor_count))
minl = minl * factor
factor_count += 1
# # # # # # # # # # # # #
# first stage - fast proposal network (pnet) to obtain face candidates
# # # # # # # # # # # # #
images_obj_per_resolution = {}
# TODO: use some type of rounding to number module 8 to increase probability that pyramid images will have the same resolution across input images
for index, scales in enumerate(all_scales):
h = images[index].shape[0]
w = images[index].shape[1]
for scale in scales:
hs = int(np.ceil(h * scale))
ws = int(np.ceil(w * scale))
if (ws, hs) not in images_obj_per_resolution:
images_obj_per_resolution[(ws, hs)] = []
im_data = imresample(images[index], (hs, ws))
im_data = (im_data - 127.5) * 0.0078125
img_y = np.transpose(im_data, (1, 0, 2)) # caffe uses different dimensions ordering
images_obj_per_resolution[(ws, hs)].append({'scale': scale, 'image': img_y, 'index': index})
for resolution in images_obj_per_resolution:
images_per_resolution = [i['image'] for i in images_obj_per_resolution[resolution]]
outs = pnet(images_per_resolution)
for index in range(len(outs[0])):
scale = images_obj_per_resolution[resolution][index]['scale']
image_index = images_obj_per_resolution[resolution][index]['index']
out0 = np.transpose(outs[0][index], (1, 0, 2))
out1 = np.transpose(outs[1][index], (1, 0, 2))
boxes, _ = generateBoundingBox(out1[:, :, 1].copy(), out0[:, :, :].copy(), scale, threshold[0])
# inter-scale nms
pick = nms(boxes.copy(), 0.5, 'Union')
if boxes.size > 0 and pick.size > 0:
boxes = boxes[pick, :]
images_with_boxes[image_index]['total_boxes'] = np.append(images_with_boxes[image_index]['total_boxes'],
boxes,
axis=0)
for index, image_obj in enumerate(images_with_boxes):
numbox = image_obj['total_boxes'].shape[0]
if numbox > 0:
h = images[index].shape[0]
w = images[index].shape[1]
pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Union')
image_obj['total_boxes'] = image_obj['total_boxes'][pick, :]
regw = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0]
regh = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1]
qq1 = image_obj['total_boxes'][:, 0] + image_obj['total_boxes'][:, 5] * regw
qq2 = image_obj['total_boxes'][:, 1] + image_obj['total_boxes'][:, 6] * regh
qq3 = image_obj['total_boxes'][:, 2] + image_obj['total_boxes'][:, 7] * regw
qq4 = image_obj['total_boxes'][:, 3] + image_obj['total_boxes'][:, 8] * regh
image_obj['total_boxes'] = np.transpose(np.vstack([qq1, qq2, qq3, qq4, image_obj['total_boxes'][:, 4]]))
image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy())
image_obj['total_boxes'][:, 0:4] = np.fix(image_obj['total_boxes'][:, 0:4]).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h)
numbox = image_obj['total_boxes'].shape[0]
tempimg = np.zeros((24, 24, 3, numbox))
if numbox > 0:
for k in range(0, numbox):
tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3))
tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :]
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
tempimg[:, :, :, k] = imresample(tmp, (24, 24))
else:
return np.empty()
tempimg = (tempimg - 127.5) * 0.0078125
image_obj['rnet_input'] = np.transpose(tempimg, (3, 1, 0, 2))
# # # # # # # # # # # # #
# second stage - refinement of face candidates with rnet
# # # # # # # # # # # # #
bulk_rnet_input = np.empty((0, 24, 24, 3))
for index, image_obj in enumerate(images_with_boxes):
if 'rnet_input' in image_obj:
bulk_rnet_input = np.append(bulk_rnet_input, image_obj['rnet_input'], axis=0)
out = rnet(bulk_rnet_input)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
score = out1[1, :]
i = 0
for index, image_obj in enumerate(images_with_boxes):
if 'rnet_input' not in image_obj:
continue
rnet_input_count = image_obj['rnet_input'].shape[0]
score_per_image = score[i:i + rnet_input_count]
out0_per_image = out0[:, i:i + rnet_input_count]
ipass = np.where(score_per_image > threshold[1])
image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(),
np.expand_dims(score_per_image[ipass].copy(), 1)])
mv = out0_per_image[:, ipass[0]]
if image_obj['total_boxes'].shape[0] > 0:
h = images[index].shape[0]
w = images[index].shape[1]
pick = nms(image_obj['total_boxes'], 0.7, 'Union')
image_obj['total_boxes'] = image_obj['total_boxes'][pick, :]
image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv[:, pick]))
image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy())
numbox = image_obj['total_boxes'].shape[0]
if numbox > 0:
tempimg = np.zeros((48, 48, 3, numbox))
image_obj['total_boxes'] = np.fix(image_obj['total_boxes']).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h)
for k in range(0, numbox):
tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3))
tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :]
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
tempimg[:, :, :, k] = imresample(tmp, (48, 48))
else:
return np.empty()
tempimg = (tempimg - 127.5) * 0.0078125
image_obj['onet_input'] = np.transpose(tempimg, (3, 1, 0, 2))
i += rnet_input_count
# # # # # # # # # # # # #
# third stage - further refinement and facial landmarks positions with onet
# # # # # # # # # # # # #
bulk_onet_input = np.empty((0, 48, 48, 3))
for index, image_obj in enumerate(images_with_boxes):
if 'onet_input' in image_obj:
bulk_onet_input = np.append(bulk_onet_input, image_obj['onet_input'], axis=0)
out = onet(bulk_onet_input)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
out2 = np.transpose(out[2])
score = out2[1, :]
points = out1
i = 0
ret = []
for index, image_obj in enumerate(images_with_boxes):
if 'onet_input' not in image_obj:
ret.append(None)
continue
onet_input_count = image_obj['onet_input'].shape[0]
out0_per_image = out0[:, i:i + onet_input_count]
score_per_image = score[i:i + onet_input_count]
points_per_image = points[:, i:i + onet_input_count]
ipass = np.where(score_per_image > threshold[2])
points_per_image = points_per_image[:, ipass[0]]
image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(),
np.expand_dims(score_per_image[ipass].copy(), 1)])
mv = out0_per_image[:, ipass[0]]
w = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0] + 1
h = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1] + 1
points_per_image[0:5, :] = np.tile(w, (5, 1)) * points_per_image[0:5, :] + np.tile(
image_obj['total_boxes'][:, 0], (5, 1)) - 1
points_per_image[5:10, :] = np.tile(h, (5, 1)) * points_per_image[5:10, :] + np.tile(
image_obj['total_boxes'][:, 1], (5, 1)) - 1
if image_obj['total_boxes'].shape[0] > 0:
image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv))
pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Min')
image_obj['total_boxes'] = image_obj['total_boxes'][pick, :]
points_per_image = points_per_image[:, pick]
ret.append((image_obj['total_boxes'], points_per_image))
else:
ret.append(None)
i += onet_input_count
return ret
# function [boundingbox] = bbreg(boundingbox,reg)
def bbreg(boundingbox,reg):
"""Calibrate bounding boxes"""
if reg.shape[1]==1:
reg = np.reshape(reg, (reg.shape[2], reg.shape[3]))
w = boundingbox[:,2]-boundingbox[:,0]+1
h = boundingbox[:,3]-boundingbox[:,1]+1
b1 = boundingbox[:,0]+reg[:,0]*w
b2 = boundingbox[:,1]+reg[:,1]*h
b3 = boundingbox[:,2]+reg[:,2]*w
b4 = boundingbox[:,3]+reg[:,3]*h
boundingbox[:,0:4] = np.transpose(np.vstack([b1, b2, b3, b4 ]))
return boundingbox
def generateBoundingBox(imap, reg, scale, t):
"""Use heatmap to generate bounding boxes"""
stride=2
cellsize=12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0]==1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size==0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def nms(boxes, threshold, method):
if boxes.size==0:
return np.empty((0,3))
x1 = boxes[:,0]
y1 = boxes[:,1]
x2 = boxes[:,2]
y2 = boxes[:,3]
s = boxes[:,4]
area = (x2-x1+1) * (y2-y1+1)
I = np.argsort(s)
pick = np.zeros_like(s, dtype=np.int16)
counter = 0
while I.size>0:
i = I[-1]
pick[counter] = i
counter += 1
idx = I[0:-1]
xx1 = np.maximum(x1[i], x1[idx])
yy1 = np.maximum(y1[i], y1[idx])
xx2 = np.minimum(x2[i], x2[idx])
yy2 = np.minimum(y2[i], y2[idx])
w = np.maximum(0.0, xx2-xx1+1)
h = np.maximum(0.0, yy2-yy1+1)
inter = w * h
if method is 'Min':
o = inter / np.minimum(area[i], area[idx])
else:
o = inter / (area[i] + area[idx] - inter)
I = I[np.where(o<=threshold)]
pick = pick[0:counter]
return pick
# function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h)
def pad(total_boxes, w, h):
"""Compute the padding coordinates (pad the bounding boxes to square)"""
tmpw = (total_boxes[:,2]-total_boxes[:,0]+1).astype(np.int32)
tmph = (total_boxes[:,3]-total_boxes[:,1]+1).astype(np.int32)
numbox = total_boxes.shape[0]
dx = np.ones((numbox), dtype=np.int32)
dy = np.ones((numbox), dtype=np.int32)
edx = tmpw.copy().astype(np.int32)
edy = tmph.copy().astype(np.int32)
x = total_boxes[:,0].copy().astype(np.int32)
y = total_boxes[:,1].copy().astype(np.int32)
ex = total_boxes[:,2].copy().astype(np.int32)
ey = total_boxes[:,3].copy().astype(np.int32)
tmp = np.where(ex>w)
edx.flat[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],1)
ex[tmp] = w
tmp = np.where(ey>h)
edy.flat[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],1)
ey[tmp] = h
tmp = np.where(x<1)
dx.flat[tmp] = np.expand_dims(2-x[tmp],1)
x[tmp] = 1
tmp = np.where(y<1)
dy.flat[tmp] = np.expand_dims(2-y[tmp],1)
y[tmp] = 1
return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph
# function [bboxA] = rerec(bboxA)
def rerec(bboxA):
"""Convert bboxA to square."""
h = bboxA[:,3]-bboxA[:,1]
w = bboxA[:,2]-bboxA[:,0]
l = np.maximum(w, h)
bboxA[:,0] = bboxA[:,0]+w*0.5-l*0.5
bboxA[:,1] = bboxA[:,1]+h*0.5-l*0.5
bboxA[:,2:4] = bboxA[:,0:2] + np.transpose(np.tile(l,(2,1)))
return bboxA
def imresample(img, sz):
im_data = cv2.resize(img, (sz[1], sz[0]), interpolation=cv2.INTER_LINEAR) #@UndefinedVariable
return im_data
# This method is kept for debugging purpose
# h=img.shape[0]
# w=img.shape[1]
# hs, ws = sz
# dx = float(w) / ws
# dy = float(h) / hs
# im_data = np.zeros((hs,ws,3))
# for a1 in range(0,hs):
# for a2 in range(0,ws):
# for a3 in range(0,3):
# im_data[a1,a2,a3] = img[int(floor(a1*dy)),int(floor(a2*dx)),a3]
# return im_data

BIN
facelib/mtcnn_pnet.h5 Normal file

Binary file not shown.