mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 05:22:06 -07:00
SAEHD,Quick96:
improved model generalization, overall accuracy and sharpness by using new 'Learning rate dropout' technique from paper https://arxiv.org/abs/1912.00144 An example of a loss histogram where this function is enabled after the red arrow: https://i.imgur.com/3olskOd.jpg
This commit is contained in:
parent
c866448645
commit
71ebf06c89
2 changed files with 5 additions and 5 deletions
|
@ -143,8 +143,8 @@ class Quick96Model(ModelBase):
|
|||
self.CA_conv_weights_list += [layer.weights[0]] #- is Conv2D kernel_weights
|
||||
|
||||
if self.is_training_mode:
|
||||
self.src_dst_opt = RMSprop(lr=2e-4)
|
||||
self.src_dst_mask_opt = RMSprop(lr=2e-4)
|
||||
self.src_dst_opt = RMSprop(lr=2e-4, lr_dropout=0.3)
|
||||
self.src_dst_mask_opt = RMSprop(lr=2e-4, lr_dropout=0.3)
|
||||
|
||||
target_src_masked = self.model.target_src*self.model.target_srcm
|
||||
target_dst_masked = self.model.target_dst*self.model.target_dstm
|
||||
|
|
|
@ -452,9 +452,9 @@ class SAEHDModel(ModelBase):
|
|||
psd_target_dst_anti_masked = self.model.pred_src_dst*(1.0 - target_dstm)
|
||||
|
||||
if self.is_training_mode:
|
||||
self.src_dst_opt = RMSprop(lr=5e-5, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1)
|
||||
self.src_dst_mask_opt = RMSprop(lr=5e-5, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1)
|
||||
self.D_opt = RMSprop(lr=5e-5, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1)
|
||||
self.src_dst_opt = RMSprop(lr=5e-5, lr_dropout=0.3, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1)
|
||||
self.src_dst_mask_opt = RMSprop(lr=5e-5, lr_dropout=0.3, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1)
|
||||
self.D_opt = RMSprop(lr=5e-5, lr_dropout=0.3, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1)
|
||||
|
||||
src_loss = K.mean ( 10*dssim(kernel_size=int(resolution/11.6),max_value=1.0)( target_src_masked_opt, pred_src_src_masked_opt) )
|
||||
src_loss += K.mean ( 10*K.square( target_src_masked_opt - pred_src_src_masked_opt ) )
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue