mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
New script:
5.XSeg) data_dst/src mask for XSeg trainer - fetch.bat Copies faces containing XSeg polygons to aligned_xseg\ dir. Useful only if you want to collect labeled faces and reuse them in other fakes. Now you can use trained XSeg mask in the SAEHD training process. It’s mean default ‘full_face’ mask obtained from landmarks will be replaced with the mask obtained from the trained XSeg model. use 5.XSeg.optional) trained mask for data_dst/data_src - apply.bat 5.XSeg.optional) trained mask for data_dst/data_src - remove.bat Normally you don’t need it. You can use it, if you want to use ‘face_style’ and ‘bg_style’ with obstructions. XSeg trainer : now you can choose type of face XSeg trainer : now you can restart training in “override settings” Merger: XSeg-* modes now can be used with all types of faces. Therefore old MaskEditor, FANSEG models, and FAN-x modes have been removed, because the new XSeg solution is better, simpler and more convenient, which costs only 1 hour of manual masking for regular deepfake.
This commit is contained in:
parent
e5bad483ca
commit
6d3607a13d
30 changed files with 279 additions and 1520 deletions
|
@ -7,7 +7,7 @@ import numpy as np
|
|||
from core import mathlib
|
||||
from core.interact import interact as io
|
||||
from core.leras import nn
|
||||
from facelib import FaceType, TernausNet, XSegNet
|
||||
from facelib import FaceType, XSegNet
|
||||
from models import ModelBase
|
||||
from samplelib import *
|
||||
|
||||
|
@ -20,6 +20,19 @@ class XSegModel(ModelBase):
|
|||
def on_initialize_options(self):
|
||||
self.set_batch_size(4)
|
||||
|
||||
ask_override = self.ask_override()
|
||||
|
||||
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
|
||||
|
||||
if not self.is_first_run() and ask_override:
|
||||
self.restart_training = io.input_bool(f"Restart training?", False, help_message="Reset model weights and start training from scratch.")
|
||||
else:
|
||||
self.restart_training = False
|
||||
|
||||
if self.is_first_run():
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf'], help_message="Half / mid face / full face / whole face. Choose the same as your deepfake model.").lower()
|
||||
|
||||
|
||||
#override
|
||||
def on_initialize(self):
|
||||
device_config = nn.getCurrentDeviceConfig()
|
||||
|
@ -31,7 +44,14 @@ class XSegModel(ModelBase):
|
|||
devices = device_config.devices
|
||||
|
||||
self.resolution = resolution = 256
|
||||
self.face_type = FaceType.WHOLE_FACE
|
||||
|
||||
if self.restart_training:
|
||||
self.set_iter(0)
|
||||
|
||||
self.face_type = {'h' : FaceType.HALF,
|
||||
'mf' : FaceType.MID_FULL,
|
||||
'f' : FaceType.FULL,
|
||||
'wf' : FaceType.WHOLE_FACE}[ self.options['face_type'] ]
|
||||
|
||||
place_model_on_cpu = len(devices) == 0
|
||||
models_opt_device = '/CPU:0' if place_model_on_cpu else '/GPU:0'
|
||||
|
@ -40,7 +60,7 @@ class XSegModel(ModelBase):
|
|||
mask_shape = nn.get4Dshape(resolution,resolution,1)
|
||||
|
||||
# Initializing model classes
|
||||
self.model = XSegNet(name=f'XSeg',
|
||||
self.model = XSegNet(name='XSeg',
|
||||
resolution=resolution,
|
||||
load_weights=not self.is_first_run(),
|
||||
weights_file_root=self.get_model_root_path(),
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue