New script:

5.XSeg) data_dst/src mask for XSeg trainer - fetch.bat
Copies faces containing XSeg polygons to aligned_xseg\ dir.
Useful only if you want to collect labeled faces and reuse them in other fakes.

Now you can use trained XSeg mask in the SAEHD training process.
It’s mean default ‘full_face’ mask obtained from landmarks will be replaced with the mask obtained from the trained XSeg model.
use
5.XSeg.optional) trained mask for data_dst/data_src - apply.bat
5.XSeg.optional) trained mask for data_dst/data_src - remove.bat

Normally you don’t need it. You can use it, if you want to use ‘face_style’ and ‘bg_style’ with obstructions.

XSeg trainer : now you can choose type of face
XSeg trainer : now you can restart training in “override settings”
Merger: XSeg-* modes now can be used with all types of faces.

Therefore old MaskEditor, FANSEG models, and FAN-x modes have been removed,
because the new XSeg solution is better, simpler and more convenient, which costs only 1 hour of manual masking for regular deepfake.
This commit is contained in:
Colombo 2020-03-30 14:00:40 +04:00
commit 6d3607a13d
30 changed files with 279 additions and 1520 deletions

View file

@ -66,7 +66,6 @@ class InteractiveMergerSubprocessor(Subprocessor):
self.predictor_func = client_dict['predictor_func']
self.predictor_input_shape = client_dict['predictor_input_shape']
self.face_enhancer_func = client_dict['face_enhancer_func']
self.fanseg_full_face_256_extract_func = client_dict['fanseg_full_face_256_extract_func']
self.xseg_256_extract_func = client_dict['xseg_256_extract_func']
@ -103,7 +102,6 @@ class InteractiveMergerSubprocessor(Subprocessor):
try:
final_img = MergeMasked (self.predictor_func, self.predictor_input_shape,
face_enhancer_func=self.face_enhancer_func,
fanseg_full_face_256_extract_func=self.fanseg_full_face_256_extract_func,
xseg_256_extract_func=self.xseg_256_extract_func,
cfg=cfg,
frame_info=frame_info)
@ -137,7 +135,7 @@ class InteractiveMergerSubprocessor(Subprocessor):
#override
def __init__(self, is_interactive, merger_session_filepath, predictor_func, predictor_input_shape, face_enhancer_func, fanseg_full_face_256_extract_func, xseg_256_extract_func, merger_config, frames, frames_root_path, output_path, output_mask_path, model_iter):
def __init__(self, is_interactive, merger_session_filepath, predictor_func, predictor_input_shape, face_enhancer_func, xseg_256_extract_func, merger_config, frames, frames_root_path, output_path, output_mask_path, model_iter):
if len (frames) == 0:
raise ValueError ("len (frames) == 0")
@ -151,7 +149,6 @@ class InteractiveMergerSubprocessor(Subprocessor):
self.predictor_input_shape = predictor_input_shape
self.face_enhancer_func = face_enhancer_func
self.fanseg_full_face_256_extract_func = fanseg_full_face_256_extract_func
self.xseg_256_extract_func = xseg_256_extract_func
self.frames_root_path = frames_root_path
@ -273,7 +270,6 @@ class InteractiveMergerSubprocessor(Subprocessor):
'predictor_func': self.predictor_func,
'predictor_input_shape' : self.predictor_input_shape,
'face_enhancer_func': self.face_enhancer_func,
'fanseg_full_face_256_extract_func' : self.fanseg_full_face_256_extract_func,
'xseg_256_extract_func' : self.xseg_256_extract_func,
'stdin_fd': sys.stdin.fileno() if MERGER_DEBUG else None
}

View file

@ -8,12 +8,10 @@ from facelib import FaceType, LandmarksProcessor
from core.interact import interact as io
from core.cv2ex import *
fanseg_input_size = 256
xseg_input_size = 256
def MergeMaskedFace (predictor_func, predictor_input_shape,
face_enhancer_func,
fanseg_full_face_256_extract_func,
xseg_256_extract_func,
cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks):
img_size = img_bgr.shape[1], img_bgr.shape[0]
@ -73,61 +71,27 @@ def MergeMaskedFace (predictor_func, predictor_input_shape,
if cfg.mask_mode == 2: #dst
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
elif cfg.mask_mode >= 3 and cfg.mask_mode <= 7:
elif cfg.mask_mode >= 3 and cfg.mask_mode <= 6: #XSeg modes
if cfg.mask_mode == 3 or cfg.mask_mode == 5 or cfg.mask_mode == 6:
prd_face_fanseg_bgr = cv2.resize (prd_face_bgr, (fanseg_input_size,)*2 )
prd_face_fanseg_mask = fanseg_full_face_256_extract_func(prd_face_fanseg_bgr)
FAN_prd_face_mask_a_0 = cv2.resize ( prd_face_fanseg_mask, (output_size, output_size), cv2.INTER_CUBIC)
if cfg.mask_mode >= 4 and cfg.mask_mode <= 7:
full_face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, fanseg_input_size, face_type=FaceType.FULL)
dst_face_fanseg_bgr = cv2.warpAffine(img_bgr, full_face_fanseg_mat, (fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
dst_face_fanseg_mask = fanseg_full_face_256_extract_func(dst_face_fanseg_bgr )
if cfg.face_type == FaceType.FULL:
FAN_dst_face_mask_a_0 = cv2.resize (dst_face_fanseg_mask, (output_size,output_size), cv2.INTER_CUBIC)
else:
face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, fanseg_input_size, face_type=cfg.face_type)
fanseg_rect_corner_pts = np.array ( [ [0,0], [fanseg_input_size-1,0], [0,fanseg_input_size-1] ], dtype=np.float32 )
a = LandmarksProcessor.transform_points (fanseg_rect_corner_pts, face_fanseg_mat, invert=True )
b = LandmarksProcessor.transform_points (a, full_face_fanseg_mat )
m = cv2.getAffineTransform(b, fanseg_rect_corner_pts)
FAN_dst_face_mask_a_0 = cv2.warpAffine(dst_face_fanseg_mask, m, (fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
FAN_dst_face_mask_a_0 = cv2.resize (FAN_dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
if cfg.mask_mode == 3: #FAN-prd
prd_face_mask_a_0 = FAN_prd_face_mask_a_0
elif cfg.mask_mode == 4: #FAN-dst
prd_face_mask_a_0 = FAN_dst_face_mask_a_0
elif cfg.mask_mode == 5:
prd_face_mask_a_0 = FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
elif cfg.mask_mode == 6:
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
elif cfg.mask_mode == 7:
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_dst_face_mask_a_0
elif cfg.mask_mode >= 8 and cfg.mask_mode <= 11:
if cfg.mask_mode == 8 or cfg.mask_mode == 10 or cfg.mask_mode == 11:
# obtain XSeg-prd
prd_face_xseg_bgr = cv2.resize (prd_face_bgr, (xseg_input_size,)*2, cv2.INTER_CUBIC)
prd_face_xseg_mask = xseg_256_extract_func(prd_face_xseg_bgr)
X_prd_face_mask_a_0 = cv2.resize ( prd_face_xseg_mask, (output_size, output_size), cv2.INTER_CUBIC)
if cfg.mask_mode >= 9 and cfg.mask_mode <= 11:
whole_face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, xseg_input_size, face_type=FaceType.WHOLE_FACE)
dst_face_xseg_bgr = cv2.warpAffine(img_bgr, whole_face_mat, (xseg_input_size,)*2, flags=cv2.INTER_CUBIC )
if cfg.mask_mode >= 4 and cfg.mask_mode <= 6:
# obtain XSeg-dst
xseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, xseg_input_size, face_type=cfg.face_type)
dst_face_xseg_bgr = cv2.warpAffine(img_bgr, xseg_mat, (xseg_input_size,)*2, flags=cv2.INTER_CUBIC )
dst_face_xseg_mask = xseg_256_extract_func(dst_face_xseg_bgr)
X_dst_face_mask_a_0 = cv2.resize (dst_face_xseg_mask, (output_size,output_size), cv2.INTER_CUBIC)
if cfg.mask_mode == 8: #'XSeg-prd',
if cfg.mask_mode == 3: #'XSeg-prd',
prd_face_mask_a_0 = X_prd_face_mask_a_0
elif cfg.mask_mode == 9: #'XSeg-dst',
elif cfg.mask_mode == 4: #'XSeg-dst',
prd_face_mask_a_0 = X_dst_face_mask_a_0
elif cfg.mask_mode == 10: #'XSeg-prd*XSeg-dst',
elif cfg.mask_mode == 5: #'XSeg-prd*XSeg-dst',
prd_face_mask_a_0 = X_prd_face_mask_a_0 * X_dst_face_mask_a_0
elif cfg.mask_mode == 11: #learned*XSeg-prd*XSeg-dst'
elif cfg.mask_mode == 6: #learned*XSeg-prd*XSeg-dst'
prd_face_mask_a_0 = prd_face_mask_a_0 * X_prd_face_mask_a_0 * X_dst_face_mask_a_0
prd_face_mask_a_0[ prd_face_mask_a_0 < (1.0/255.0) ] = 0.0 # get rid of noise
@ -346,7 +310,6 @@ def MergeMaskedFace (predictor_func, predictor_input_shape,
def MergeMasked (predictor_func,
predictor_input_shape,
face_enhancer_func,
fanseg_full_face_256_extract_func,
xseg_256_extract_func,
cfg,
frame_info):
@ -356,7 +319,7 @@ def MergeMasked (predictor_func,
outs = []
for face_num, img_landmarks in enumerate( frame_info.landmarks_list ):
out_img, out_img_merging_mask = MergeMaskedFace (predictor_func, predictor_input_shape, face_enhancer_func, fanseg_full_face_256_extract_func, xseg_256_extract_func, cfg, frame_info, img_bgr_uint8, img_bgr, img_landmarks)
out_img, out_img_merging_mask = MergeMaskedFace (predictor_func, predictor_input_shape, face_enhancer_func, xseg_256_extract_func, cfg, frame_info, img_bgr_uint8, img_bgr, img_landmarks)
outs += [ (out_img, out_img_merging_mask) ]
#Combining multiple face outputs

View file

@ -83,34 +83,14 @@ mode_str_dict = {}
for key in mode_dict.keys():
mode_str_dict[ mode_dict[key] ] = key
"""
whole_face_mask_mode_dict = {1:'learned',
2:'dst',
3:'FAN-prd',
4:'FAN-dst',
5:'FAN-prd*FAN-dst',
6:'learned*FAN-prd*FAN-dst'
}
"""
whole_face_mask_mode_dict = {1:'learned',
2:'dst',
8:'XSeg-prd',
9:'XSeg-dst',
10:'XSeg-prd*XSeg-dst',
11:'learned*XSeg-prd*XSeg-dst'
}
mask_mode_dict = {1:'learned',
2:'dst',
3:'XSeg-prd',
4:'XSeg-dst',
5:'XSeg-prd*XSeg-dst',
6:'learned*XSeg-prd*XSeg-dst'
}
full_face_mask_mode_dict = {1:'learned',
2:'dst',
3:'FAN-prd',
4:'FAN-dst',
5:'FAN-prd*FAN-dst',
6:'learned*FAN-prd*FAN-dst'}
half_face_mask_mode_dict = {1:'learned',
2:'dst',
4:'FAN-dst',
7:'learned*FAN-dst'}
ctm_dict = { 0: "None", 1:"rct", 2:"lct", 3:"mkl", 4:"mkl-m", 5:"idt", 6:"idt-m", 7:"sot-m", 8:"mix-m" }
ctm_str_dict = {None:0, "rct":1, "lct":2, "mkl":3, "mkl-m":4, "idt":5, "idt-m":6, "sot-m":7, "mix-m":8 }
@ -176,12 +156,7 @@ class MergerConfigMasked(MergerConfig):
self.hist_match_threshold = np.clip ( self.hist_match_threshold+diff , 0, 255)
def toggle_mask_mode(self):
if self.face_type == FaceType.WHOLE_FACE:
a = list( whole_face_mask_mode_dict.keys() )
elif self.face_type == FaceType.FULL:
a = list( full_face_mask_mode_dict.keys() )
else:
a = list( half_face_mask_mode_dict.keys() )
a = list( mask_mode_dict.keys() )
self.mask_mode = a[ (a.index(self.mask_mode)+1) % len(a) ]
def add_erode_mask_modifier(self, diff):
@ -227,26 +202,11 @@ class MergerConfigMasked(MergerConfig):
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold", 255, add_info="0..255"), 0, 255)
if self.face_type == FaceType.WHOLE_FACE:
s = """Choose mask mode: \n"""
for key in whole_face_mask_mode_dict.keys():
s += f"""({key}) {whole_face_mask_mode_dict[key]}\n"""
io.log_info(s)
self.mask_mode = io.input_int ("", 1, valid_list=whole_face_mask_mode_dict.keys() )
elif self.face_type == FaceType.FULL:
s = """Choose mask mode: \n"""
for key in full_face_mask_mode_dict.keys():
s += f"""({key}) {full_face_mask_mode_dict[key]}\n"""
io.log_info(s)
self.mask_mode = io.input_int ("", 1, valid_list=full_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images. 'FAN-prd' - using super smooth mask by pretrained FAN-model from predicted face. 'FAN-dst' - using super smooth mask by pretrained FAN-model from dst face. 'FAN-prd*FAN-dst' or 'learned*FAN-prd*FAN-dst' - using multiplied masks.")
else:
s = """Choose mask mode: \n"""
for key in half_face_mask_mode_dict.keys():
s += f"""({key}) {half_face_mask_mode_dict[key]}\n"""
io.log_info(s)
self.mask_mode = io.input_int ("", 1, valid_list=half_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images.")
s = """Choose mask mode: \n"""
for key in mask_mode_dict.keys():
s += f"""({key}) {mask_mode_dict[key]}\n"""
io.log_info(s)
self.mask_mode = io.input_int ("", 1, valid_list=mask_mode_dict.keys() )
if 'raw' not in self.mode:
self.erode_mask_modifier = np.clip ( io.input_int ("Choose erode mask modifier", 0, add_info="-400..400"), -400, 400)
@ -302,14 +262,9 @@ class MergerConfigMasked(MergerConfig):
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
r += f"""hist_match_threshold: {self.hist_match_threshold}\n"""
if self.face_type == FaceType.WHOLE_FACE:
r += f"""mask_mode: { whole_face_mask_mode_dict[self.mask_mode] }\n"""
elif self.face_type == FaceType.FULL:
r += f"""mask_mode: { full_face_mask_mode_dict[self.mask_mode] }\n"""
else:
r += f"""mask_mode: { half_face_mask_mode_dict[self.mask_mode] }\n"""
r += f"""mask_mode: { mask_mode_dict[self.mask_mode] }\n"""
if 'raw' not in self.mode:
r += (f"""erode_mask_modifier: {self.erode_mask_modifier}\n"""
f"""blur_mask_modifier: {self.blur_mask_modifier}\n"""