New script:

5.XSeg) data_dst/src mask for XSeg trainer - fetch.bat
Copies faces containing XSeg polygons to aligned_xseg\ dir.
Useful only if you want to collect labeled faces and reuse them in other fakes.

Now you can use trained XSeg mask in the SAEHD training process.
It’s mean default ‘full_face’ mask obtained from landmarks will be replaced with the mask obtained from the trained XSeg model.
use
5.XSeg.optional) trained mask for data_dst/data_src - apply.bat
5.XSeg.optional) trained mask for data_dst/data_src - remove.bat

Normally you don’t need it. You can use it, if you want to use ‘face_style’ and ‘bg_style’ with obstructions.

XSeg trainer : now you can choose type of face
XSeg trainer : now you can restart training in “override settings”
Merger: XSeg-* modes now can be used with all types of faces.

Therefore old MaskEditor, FANSEG models, and FAN-x modes have been removed,
because the new XSeg solution is better, simpler and more convenient, which costs only 1 hour of manual masking for regular deepfake.
This commit is contained in:
Colombo 2020-03-30 14:00:40 +04:00
parent e5bad483ca
commit 6d3607a13d
30 changed files with 279 additions and 1520 deletions

View file

@ -1,109 +1,96 @@
import traceback
import json
import shutil
import traceback
from pathlib import Path
import numpy as np
from core import pathex
from core.imagelib import IEPolys
from core.cv2ex import *
from core.interact import interact as io
from core.leras import nn
from DFLIMG import *
from facelib import XSegNet
def merge(input_dir):
input_path = Path(input_dir)
def apply_xseg(input_path, model_path):
if not input_path.exists():
raise ValueError('input_dir not found. Please ensure it exists.')
raise ValueError(f'{input_path} not found. Please ensure it exists.')
if not model_path.exists():
raise ValueError(f'{model_path} not found. Please ensure it exists.')
io.log_info(f'Applying trained XSeg model to {input_path.name}/ folder.')
device_config = nn.DeviceConfig.ask_choose_device(choose_only_one=True)
nn.initialize(device_config)
xseg = XSegNet(name='XSeg',
load_weights=True,
weights_file_root=model_path,
data_format=nn.data_format,
raise_on_no_model_files=True)
res = xseg.get_resolution()
images_paths = pathex.get_image_paths(input_path, return_Path_class=True)
images_processed = 0
for filepath in io.progress_bar_generator(images_paths, "Processing"):
json_filepath = filepath.parent / (filepath.stem+'.json')
if json_filepath.exists():
dflimg = DFLIMG.load(filepath)
if dflimg is not None and dflimg.has_data():
try:
json_dict = json.loads(json_filepath.read_text())
seg_ie_polys = IEPolys()
total_points = 0
#include polys first
for shape in json_dict['shapes']:
if shape['shape_type'] == 'polygon' and \
shape['label'] != '0':
seg_ie_poly = seg_ie_polys.add(1)
for x,y in shape['points']:
seg_ie_poly.add( int(x), int(y) )
total_points += 1
#exclude polys
for shape in json_dict['shapes']:
if shape['shape_type'] == 'polygon' and \
shape['label'] == '0':
seg_ie_poly = seg_ie_polys.add(0)
for x,y in shape['points']:
seg_ie_poly.add( int(x), int(y) )
total_points += 1
if total_points == 0:
io.log_info(f"No points found in {json_filepath}, skipping.")
continue
dflimg.set_seg_ie_polys ( seg_ie_polys.dump() )
dflimg.save()
json_filepath.unlink()
images_processed += 1
except:
io.log_err(f"err {filepath}, {traceback.format_exc()}")
return
io.log_info(f"Images processed: {images_processed}")
def split(input_dir ):
input_path = Path(input_dir)
if not input_path.exists():
raise ValueError('input_dir not found. Please ensure it exists.')
images_paths = pathex.get_image_paths(input_path, return_Path_class=True)
images_processed = 0
for filepath in io.progress_bar_generator(images_paths, "Processing"):
json_filepath = filepath.parent / (filepath.stem+'.json')
dflimg = DFLIMG.load(filepath)
if dflimg is not None and dflimg.has_data():
try:
seg_ie_polys = dflimg.get_seg_ie_polys()
if seg_ie_polys is not None:
json_dict = {}
json_dict['version'] = "4.2.9"
json_dict['flags'] = {}
json_dict['shapes'] = []
json_dict['imagePath'] = filepath.name
json_dict['imageData'] = None
for poly_type, points_list in seg_ie_polys:
shape_dict = {}
shape_dict['label'] = str(poly_type)
shape_dict['points'] = points_list
shape_dict['group_id'] = None
shape_dict['shape_type'] = 'polygon'
shape_dict['flags'] = {}
json_dict['shapes'].append( shape_dict )
if dflimg is None or not dflimg.has_data():
io.log_info(f'{filepath} is not a DFLIMG')
continue
img = cv2_imread(filepath).astype(np.float32) / 255.0
h,w,c = img.shape
if w != res:
img = cv2.resize( img, (res,res), interpolation=cv2.INTER_CUBIC )
if len(img.shape) == 2:
img = img[...,None]
mask = xseg.extract(img)
mask[mask < 0.5]=0
mask[mask >= 0.5]=1
dflimg.set_xseg_mask(mask)
dflimg.save()
json_filepath.write_text( json.dumps (json_dict,indent=4) )
def remove_xseg(input_path):
if not input_path.exists():
raise ValueError(f'{input_path} not found. Please ensure it exists.')
images_paths = pathex.get_image_paths(input_path, return_Path_class=True)
for filepath in io.progress_bar_generator(images_paths, "Processing"):
dflimg = DFLIMG.load(filepath)
if dflimg is None or not dflimg.has_data():
io.log_info(f'{filepath} is not a DFLIMG')
continue
dflimg.set_xseg_mask(None)
dflimg.save()
def fetch_xseg(input_path):
if not input_path.exists():
raise ValueError(f'{input_path} not found. Please ensure it exists.')
output_path = input_path.parent / (input_path.name + '_xseg')
output_path.mkdir(exist_ok=True, parents=True)
io.log_info(f'Copying faces containing XSeg polygons to {output_path.name}/ folder.')
images_paths = pathex.get_image_paths(input_path, return_Path_class=True)
files_copied = 0
for filepath in io.progress_bar_generator(images_paths, "Processing"):
dflimg = DFLIMG.load(filepath)
if dflimg is None or not dflimg.has_data():
io.log_info(f'{filepath} is not a DFLIMG')
continue
ie_polys = dflimg.get_seg_ie_polys()
dflimg.set_seg_ie_polys(None)
dflimg.save()
images_processed += 1
except:
io.log_err(f"err {filepath}, {traceback.format_exc()}")
return
io.log_info(f"Images processed: {images_processed}")
if ie_polys.has_polys():
files_copied += 1
shutil.copy ( str(filepath), str(output_path / filepath.name) )
io.log_info(f'Files copied: {files_copied}')