mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-22 14:24:40 -07:00
move flask trainer code into main trainer
This commit is contained in:
parent
9db0507ef8
commit
6d0b34635c
3 changed files with 149 additions and 439 deletions
2
main.py
2
main.py
|
@ -135,7 +135,7 @@ if __name__ == "__main__":
|
|||
device_args = {'cpu_only' : arguments.cpu_only,
|
||||
'force_gpu_idx' : arguments.force_gpu_idx,
|
||||
}
|
||||
from mainscripts import FlaskTrainer as Trainer
|
||||
from mainscripts import Trainer
|
||||
Trainer.main(args, device_args)
|
||||
|
||||
p = subparsers.add_parser( "train", help="Trainer")
|
||||
|
|
|
@ -1,379 +0,0 @@
|
|||
import traceback
|
||||
import queue
|
||||
import threading
|
||||
import time
|
||||
from enum import Enum
|
||||
|
||||
import numpy as np
|
||||
import itertools
|
||||
from pathlib import Path
|
||||
|
||||
from flaskr.app import create_flask_app
|
||||
import imagelib
|
||||
import cv2
|
||||
import models
|
||||
from interact import interact as io
|
||||
|
||||
|
||||
def trainerThread (s2c, c2s, e, args, device_args, socketio=None):
|
||||
while True:
|
||||
try:
|
||||
start_time = time.time()
|
||||
|
||||
training_data_src_path = Path( args.get('training_data_src_dir', '') )
|
||||
training_data_dst_path = Path( args.get('training_data_dst_dir', '') )
|
||||
|
||||
pretraining_data_path = args.get('pretraining_data_dir', '')
|
||||
pretraining_data_path = Path(pretraining_data_path) if pretraining_data_path is not None else None
|
||||
|
||||
model_path = Path( args.get('model_path', '') )
|
||||
model_name = args.get('model_name', '')
|
||||
save_interval_min = 15
|
||||
debug = args.get('debug', '')
|
||||
execute_programs = args.get('execute_programs', [])
|
||||
|
||||
if not training_data_src_path.exists():
|
||||
io.log_err('Training data src directory does not exist.')
|
||||
break
|
||||
|
||||
if not training_data_dst_path.exists():
|
||||
io.log_err('Training data dst directory does not exist.')
|
||||
break
|
||||
|
||||
if not model_path.exists():
|
||||
model_path.mkdir(exist_ok=True)
|
||||
|
||||
model = models.import_model(model_name)(
|
||||
model_path,
|
||||
training_data_src_path=training_data_src_path,
|
||||
training_data_dst_path=training_data_dst_path,
|
||||
pretraining_data_path=pretraining_data_path,
|
||||
debug=debug,
|
||||
device_args=device_args)
|
||||
|
||||
is_reached_goal = model.is_reached_iter_goal()
|
||||
|
||||
shared_state = { 'after_save' : False }
|
||||
loss_string = ""
|
||||
save_iter = model.get_iter()
|
||||
def model_save():
|
||||
if not debug and not is_reached_goal:
|
||||
io.log_info ("Saving....", end='\r')
|
||||
model.save()
|
||||
shared_state['after_save'] = True
|
||||
|
||||
def send_preview():
|
||||
if not debug:
|
||||
previews = model.get_previews()
|
||||
c2s.put ( {'op':'show', 'previews': previews, 'iter':model.get_iter(), 'loss_history': model.get_loss_history().copy() } )
|
||||
else:
|
||||
previews = [( 'debug, press update for new', model.debug_one_iter())]
|
||||
c2s.put ( {'op':'show', 'previews': previews} )
|
||||
e.set() #Set the GUI Thread as Ready
|
||||
|
||||
|
||||
if model.is_first_run():
|
||||
model_save()
|
||||
|
||||
if model.get_target_iter() != 0:
|
||||
if is_reached_goal:
|
||||
io.log_info('Model already trained to target iteration. You can use preview.')
|
||||
else:
|
||||
io.log_info('Starting. Target iteration: %d. Press "Enter" to stop training and save model.' % ( model.get_target_iter() ) )
|
||||
else:
|
||||
io.log_info('Starting. Press "Enter" to stop training and save model.')
|
||||
|
||||
last_save_time = time.time()
|
||||
|
||||
execute_programs = [ [x[0], x[1], time.time() ] for x in execute_programs ]
|
||||
|
||||
for i in itertools.count(0,1):
|
||||
if not debug:
|
||||
cur_time = time.time()
|
||||
|
||||
for x in execute_programs:
|
||||
prog_time, prog, last_time = x
|
||||
exec_prog = False
|
||||
if prog_time > 0 and (cur_time - start_time) >= prog_time:
|
||||
x[0] = 0
|
||||
exec_prog = True
|
||||
elif prog_time < 0 and (cur_time - last_time) >= -prog_time:
|
||||
x[2] = cur_time
|
||||
exec_prog = True
|
||||
|
||||
if exec_prog:
|
||||
try:
|
||||
exec(prog)
|
||||
except Exception as e:
|
||||
print("Unable to execute program: %s" % (prog) )
|
||||
|
||||
if not is_reached_goal:
|
||||
iter, iter_time, batch_size = model.train_one_iter()
|
||||
|
||||
loss_history = model.get_loss_history()
|
||||
time_str = time.strftime("[%H:%M:%S]")
|
||||
if iter_time >= 10:
|
||||
loss_string = "{0}[#{1:06d}][{2:.5s}s][bs: {3}]".format ( time_str, iter, '{:0.4f}'.format(iter_time), batch_size )
|
||||
else:
|
||||
loss_string = "{0}[#{1:06d}][{2:04d}ms][bs: {3}]".format ( time_str, iter, int(iter_time*1000), batch_size)
|
||||
|
||||
if shared_state['after_save']:
|
||||
shared_state['after_save'] = False
|
||||
last_save_time = time.time() #upd last_save_time only after save+one_iter, because plaidML rebuilds programs after save https://github.com/plaidml/plaidml/issues/274
|
||||
|
||||
mean_loss = np.mean ( [ np.array(loss_history[i]) for i in range(save_iter, iter) ], axis=0)
|
||||
|
||||
for loss_value in mean_loss:
|
||||
loss_string += "[%.4f]" % (loss_value)
|
||||
|
||||
io.log_info (loss_string)
|
||||
|
||||
save_iter = iter
|
||||
else:
|
||||
for loss_value in loss_history[-1]:
|
||||
loss_string += "[%.4f]" % (loss_value)
|
||||
|
||||
if io.is_colab():
|
||||
io.log_info ('\r' + loss_string, end='')
|
||||
else:
|
||||
io.log_info (loss_string, end='\r')
|
||||
|
||||
if socketio is not None:
|
||||
socketio.emit('loss', loss_string)
|
||||
|
||||
if model.get_target_iter() != 0 and model.is_reached_iter_goal():
|
||||
io.log_info ('Reached target iteration.')
|
||||
model_save()
|
||||
is_reached_goal = True
|
||||
io.log_info ('You can use preview now.')
|
||||
|
||||
if not is_reached_goal and (time.time() - last_save_time) >= save_interval_min*60:
|
||||
model_save()
|
||||
send_preview()
|
||||
|
||||
if i==0:
|
||||
if is_reached_goal:
|
||||
model.pass_one_iter()
|
||||
send_preview()
|
||||
|
||||
if debug:
|
||||
time.sleep(0.005)
|
||||
|
||||
while not s2c.empty():
|
||||
input = s2c.get()
|
||||
op = input['op']
|
||||
if op == 'save':
|
||||
model_save()
|
||||
elif op == 'preview':
|
||||
if is_reached_goal:
|
||||
model.pass_one_iter()
|
||||
send_preview()
|
||||
elif op == 'close':
|
||||
model_save()
|
||||
i = -1
|
||||
break
|
||||
|
||||
if i == -1:
|
||||
break
|
||||
|
||||
|
||||
|
||||
model.finalize()
|
||||
|
||||
except Exception as e:
|
||||
print ('Error: %s' % (str(e)))
|
||||
traceback.print_exc()
|
||||
break
|
||||
c2s.put ( {'op':'close'} )
|
||||
|
||||
|
||||
class Zoom(Enum):
|
||||
ZOOM_25 = (1/4, '25%')
|
||||
ZOOM_33 = (1/3, '33%')
|
||||
ZOOM_50 = (1/2, '50%')
|
||||
ZOOM_67 = (2/3, '67%')
|
||||
ZOOM_75 = (3/4, '75%')
|
||||
ZOOM_80 = (4/5, '80%')
|
||||
ZOOM_90 = (9/10, '90%')
|
||||
ZOOM_100 = (1, '100%')
|
||||
ZOOM_110 = (11/10, '110%')
|
||||
ZOOM_125 = (5/4, '125%')
|
||||
ZOOM_150 = (3/2, '150%')
|
||||
ZOOM_175 = (7/4, '175%')
|
||||
ZOOM_200 = (2, '200%')
|
||||
ZOOM_250 = (5/2, '250%')
|
||||
ZOOM_300 = (3, '300%')
|
||||
ZOOM_400 = (4, '400%')
|
||||
ZOOM_500 = (5, '500%')
|
||||
|
||||
def __init__(self, scale, label):
|
||||
self.scale = scale
|
||||
self.label = label
|
||||
|
||||
def prev(self):
|
||||
cls = self.__class__
|
||||
members = list(cls)
|
||||
index = members.index(self) - 1
|
||||
if index < 0:
|
||||
return self
|
||||
return members[index]
|
||||
|
||||
def next(self):
|
||||
cls = self.__class__
|
||||
members = list(cls)
|
||||
index = members.index(self) + 1
|
||||
if index >= len(members):
|
||||
return self
|
||||
return members[index]
|
||||
|
||||
|
||||
def scale_previews(previews, zoom=Zoom.ZOOM_100):
|
||||
scaled = []
|
||||
for preview in previews:
|
||||
preview_name, preview_rgb = preview
|
||||
scale_factor = zoom.scale
|
||||
if scale_factor < 1:
|
||||
scaled.append((preview_name, cv2.resize(preview_rgb, (0, 0),
|
||||
fx=scale_factor,
|
||||
fy=scale_factor,
|
||||
interpolation=cv2.INTER_AREA)))
|
||||
elif scale_factor > 1:
|
||||
scaled.append((preview_name, cv2.resize(preview_rgb, (0, 0),
|
||||
fx=scale_factor,
|
||||
fy=scale_factor,
|
||||
interpolation=cv2.INTER_LANCZOS4)))
|
||||
else:
|
||||
scaled.append((preview_name, preview_rgb))
|
||||
return scaled
|
||||
|
||||
|
||||
def create_preview_pane_image(previews, selected_preview, loss_history,
|
||||
show_last_history_iters_count, iteration, batch_size, zoom=Zoom.ZOOM_100):
|
||||
scaled_previews = scale_previews(previews, zoom)
|
||||
selected_preview_name = scaled_previews[selected_preview][0]
|
||||
selected_preview_rgb = scaled_previews[selected_preview][1]
|
||||
h, w, c = selected_preview_rgb.shape
|
||||
|
||||
# HEAD
|
||||
head_lines = [
|
||||
'[s]:save [enter]:exit [-/+]:zoom: %s' % zoom.label,
|
||||
'[p]:update [space]:next preview [l]:change history range',
|
||||
'Preview: "%s" [%d/%d]' % (selected_preview_name,selected_preview+1, len(previews))
|
||||
]
|
||||
head_line_height = int(15 * zoom.scale)
|
||||
head_height = len(head_lines) * head_line_height
|
||||
head = np.ones((head_height, w, c)) * 0.1
|
||||
|
||||
for i in range(0, len(head_lines)):
|
||||
t = i * head_line_height
|
||||
b = (i+1) * head_line_height
|
||||
head[t:b, 0:w] += imagelib.get_text_image((head_line_height, w, c), head_lines[i], color=[0.8]*c)
|
||||
|
||||
final = head
|
||||
|
||||
if loss_history is not None:
|
||||
if show_last_history_iters_count == 0:
|
||||
loss_history_to_show = loss_history
|
||||
else:
|
||||
loss_history_to_show = loss_history[-show_last_history_iters_count:]
|
||||
lh_height = int(100 * zoom.scale)
|
||||
lh_img = models.ModelBase.get_loss_history_preview(loss_history_to_show, iteration, batch_size, w, c, lh_height)
|
||||
final = np.concatenate ( [final, lh_img], axis=0 )
|
||||
|
||||
final = np.concatenate([final, selected_preview_rgb], axis=0)
|
||||
final = np.clip(final, 0, 1)
|
||||
return (final*255).astype(np.uint8)
|
||||
|
||||
|
||||
def main(args, device_args):
|
||||
io.log_info ("Running trainer.\r\n")
|
||||
no_preview = args.get('no_preview', False)
|
||||
|
||||
s2c = queue.Queue()
|
||||
c2s = queue.Queue()
|
||||
s2flask = queue.Queue()
|
||||
socketio, flask_app = create_flask_app(s2c, c2s, s2flask, args)
|
||||
|
||||
e = threading.Event()
|
||||
thread = threading.Thread(target=trainerThread, args=(s2c, c2s, e, args, device_args, socketio))
|
||||
thread.start()
|
||||
|
||||
e.wait() #Wait for inital load to occur.
|
||||
|
||||
flask_t = threading.Thread(target=socketio.run, args=(flask_app,), kwargs={'debug': True, 'use_reloader': False})
|
||||
flask_t.start()
|
||||
|
||||
wnd_name = "Training preview"
|
||||
io.named_window(wnd_name)
|
||||
io.capture_keys(wnd_name)
|
||||
|
||||
previews = None
|
||||
loss_history = None
|
||||
selected_preview = 0
|
||||
update_preview = False
|
||||
is_showing = False
|
||||
is_waiting_preview = False
|
||||
show_last_history_iters_count = 0
|
||||
iteration = 0
|
||||
batch_size = 1
|
||||
zoom = Zoom.ZOOM_100
|
||||
|
||||
while True:
|
||||
if not c2s.empty():
|
||||
input = c2s.get()
|
||||
op = input['op']
|
||||
if op == 'show':
|
||||
is_waiting_preview = False
|
||||
loss_history = input['loss_history'] if 'loss_history' in input.keys() else None
|
||||
previews = input['previews'] if 'previews' in input.keys() else None
|
||||
iteration = input['iter'] if 'iter' in input.keys() else 0
|
||||
#batch_size = input['batch_size'] if 'iter' in input.keys() else 1
|
||||
if previews is not None:
|
||||
update_preview = True
|
||||
elif op == 'update':
|
||||
if not is_waiting_preview:
|
||||
is_waiting_preview = True
|
||||
s2c.put({'op': 'preview'})
|
||||
elif op == 'next_preview':
|
||||
selected_preview = (selected_preview + 1) % len(previews)
|
||||
update_preview = True
|
||||
elif op == 'change_history_range':
|
||||
if show_last_history_iters_count == 0:
|
||||
show_last_history_iters_count = 5000
|
||||
elif show_last_history_iters_count == 5000:
|
||||
show_last_history_iters_count = 10000
|
||||
elif show_last_history_iters_count == 10000:
|
||||
show_last_history_iters_count = 50000
|
||||
elif show_last_history_iters_count == 50000:
|
||||
show_last_history_iters_count = 100000
|
||||
elif show_last_history_iters_count == 100000:
|
||||
show_last_history_iters_count = 0
|
||||
update_preview = True
|
||||
elif op == 'close':
|
||||
s2c.put({'op': 'close'})
|
||||
break
|
||||
|
||||
if update_preview:
|
||||
update_preview = False
|
||||
selected_preview = selected_preview % len(previews)
|
||||
preview_pane_image = create_preview_pane_image(previews,
|
||||
selected_preview,
|
||||
loss_history,
|
||||
show_last_history_iters_count,
|
||||
iteration,
|
||||
batch_size,
|
||||
zoom)
|
||||
# io.show_image(wnd_name, preview_pane_image)
|
||||
model_path = Path(args.get('model_path', ''))
|
||||
filename = 'preview.jpg'
|
||||
preview_file = str(model_path / filename)
|
||||
cv2.imwrite(preview_file, preview_pane_image)
|
||||
s2flask.put({'op': 'show'})
|
||||
socketio.emit('preview', {'iter': iteration, 'loss': loss_history[-1]})
|
||||
|
||||
# cv2.imshow(wnd_name, preview_pane_image)
|
||||
is_showing = True
|
||||
try:
|
||||
io.process_messages(0.01)
|
||||
except KeyboardInterrupt:
|
||||
s2c.put({'op': 'close'})
|
|
@ -1,20 +1,21 @@
|
|||
import sys
|
||||
import traceback
|
||||
import traceback
|
||||
import queue
|
||||
import threading
|
||||
import time
|
||||
from enum import Enum
|
||||
import itertools
|
||||
|
||||
import numpy as np
|
||||
import itertools
|
||||
|
||||
from pathlib import Path
|
||||
from utils import Path_utils
|
||||
from flaskr.app import create_flask_app
|
||||
import imagelib
|
||||
import cv2
|
||||
import models
|
||||
from interact import interact as io
|
||||
|
||||
def trainerThread (s2c, c2s, e, args, device_args):
|
||||
|
||||
def trainer_thread (s2c, c2s, e, args, device_args, socketio=None):
|
||||
while True:
|
||||
try:
|
||||
start_time = time.time()
|
||||
|
@ -137,6 +138,9 @@ def trainerThread (s2c, c2s, e, args, device_args):
|
|||
else:
|
||||
io.log_info (loss_string, end='\r')
|
||||
|
||||
if socketio is not None:
|
||||
socketio.emit('loss', loss_string)
|
||||
|
||||
if model.get_target_iter() != 0 and model.is_reached_iter_goal():
|
||||
io.log_info ('Reached target iteration.')
|
||||
model_save()
|
||||
|
@ -287,28 +291,23 @@ def main(args, device_args):
|
|||
no_preview = args.get('no_preview', False)
|
||||
flask_preview = args.get('flask_preview', False)
|
||||
|
||||
|
||||
s2c = queue.Queue()
|
||||
c2s = queue.Queue()
|
||||
|
||||
e = threading.Event()
|
||||
thread = threading.Thread(target=trainerThread, args=(s2c, c2s, e, args, device_args) )
|
||||
thread.start()
|
||||
|
||||
e.wait() #Wait for inital load to occur.
|
||||
if flask_preview:
|
||||
s2flask = queue.Queue()
|
||||
socketio, flask_app = create_flask_app(s2c, c2s, s2flask, args)
|
||||
|
||||
e = threading.Event()
|
||||
thread = threading.Thread(target=trainer_thread, args=(s2c, c2s, e, args, device_args, socketio))
|
||||
thread.start()
|
||||
|
||||
e.wait() #Wait for inital load to occur.
|
||||
|
||||
flask_t = threading.Thread(target=socketio.run, args=(flask_app,), kwargs={'debug': True, 'use_reloader': False})
|
||||
flask_t.start()
|
||||
|
||||
if no_preview:
|
||||
while True:
|
||||
if not c2s.empty():
|
||||
input = c2s.get()
|
||||
op = input.get('op','')
|
||||
if op == 'close':
|
||||
break
|
||||
try:
|
||||
io.process_messages(0.1)
|
||||
except KeyboardInterrupt:
|
||||
s2c.put ( {'op': 'close'} )
|
||||
else:
|
||||
wnd_name = "Training preview"
|
||||
io.named_window(wnd_name)
|
||||
io.capture_keys(wnd_name)
|
||||
|
@ -336,7 +335,27 @@ def main(args, device_args):
|
|||
#batch_size = input['batch_size'] if 'iter' in input.keys() else 1
|
||||
if previews is not None:
|
||||
update_preview = True
|
||||
elif op == 'update':
|
||||
if not is_waiting_preview:
|
||||
is_waiting_preview = True
|
||||
s2c.put({'op': 'preview'})
|
||||
elif op == 'next_preview':
|
||||
selected_preview = (selected_preview + 1) % len(previews)
|
||||
update_preview = True
|
||||
elif op == 'change_history_range':
|
||||
if show_last_history_iters_count == 0:
|
||||
show_last_history_iters_count = 5000
|
||||
elif show_last_history_iters_count == 5000:
|
||||
show_last_history_iters_count = 10000
|
||||
elif show_last_history_iters_count == 10000:
|
||||
show_last_history_iters_count = 50000
|
||||
elif show_last_history_iters_count == 50000:
|
||||
show_last_history_iters_count = 100000
|
||||
elif show_last_history_iters_count == 100000:
|
||||
show_last_history_iters_count = 0
|
||||
update_preview = True
|
||||
elif op == 'close':
|
||||
s2c.put({'op': 'close'})
|
||||
break
|
||||
|
||||
if update_preview:
|
||||
|
@ -349,44 +368,114 @@ def main(args, device_args):
|
|||
iteration,
|
||||
batch_size,
|
||||
zoom)
|
||||
io.show_image(wnd_name, preview_pane_image)
|
||||
# io.show_image(wnd_name, preview_pane_image)
|
||||
model_path = Path(args.get('model_path', ''))
|
||||
filename = 'preview.jpg'
|
||||
preview_file = str(model_path / filename)
|
||||
cv2.imwrite(preview_file, preview_pane_image)
|
||||
s2flask.put({'op': 'show'})
|
||||
socketio.emit('preview', {'iter': iteration, 'loss': loss_history[-1]})
|
||||
is_showing = True
|
||||
|
||||
key_events = io.get_key_events(wnd_name)
|
||||
key, chr_key, ctrl_pressed, alt_pressed, shift_pressed = key_events[-1] if len(key_events) > 0 else (0,0,False,False,False)
|
||||
|
||||
if key == ord('\n') or key == ord('\r'):
|
||||
s2c.put ( {'op': 'close'} )
|
||||
elif key == ord('s'):
|
||||
s2c.put ( {'op': 'save'} )
|
||||
elif key == ord('p'):
|
||||
if not is_waiting_preview:
|
||||
is_waiting_preview = True
|
||||
s2c.put ( {'op': 'preview'} )
|
||||
elif key == ord('l'):
|
||||
if show_last_history_iters_count == 0:
|
||||
show_last_history_iters_count = 5000
|
||||
elif show_last_history_iters_count == 5000:
|
||||
show_last_history_iters_count = 10000
|
||||
elif show_last_history_iters_count == 10000:
|
||||
show_last_history_iters_count = 50000
|
||||
elif show_last_history_iters_count == 50000:
|
||||
show_last_history_iters_count = 100000
|
||||
elif show_last_history_iters_count == 100000:
|
||||
show_last_history_iters_count = 0
|
||||
update_preview = True
|
||||
elif key == ord(' '):
|
||||
selected_preview = (selected_preview + 1) % len(previews)
|
||||
update_preview = True
|
||||
elif key == ord('-'):
|
||||
zoom = zoom.prev()
|
||||
update_preview = True
|
||||
elif key == ord('=') or key == ord('+'):
|
||||
zoom = zoom.next()
|
||||
update_preview = True
|
||||
try:
|
||||
io.process_messages(0.1)
|
||||
io.process_messages(0.01)
|
||||
except KeyboardInterrupt:
|
||||
s2c.put ( {'op': 'close'} )
|
||||
s2c.put({'op': 'close'})
|
||||
else:
|
||||
thread = threading.Thread(target=trainer_thread, args=(s2c, c2s, e, args, device_args))
|
||||
thread.start()
|
||||
|
||||
io.destroy_all_windows()
|
||||
e.wait() #Wait for inital load to occur.
|
||||
|
||||
if no_preview:
|
||||
while True:
|
||||
if not c2s.empty():
|
||||
input = c2s.get()
|
||||
op = input.get('op','')
|
||||
if op == 'close':
|
||||
break
|
||||
try:
|
||||
io.process_messages(0.1)
|
||||
except KeyboardInterrupt:
|
||||
s2c.put ( {'op': 'close'} )
|
||||
else:
|
||||
wnd_name = "Training preview"
|
||||
io.named_window(wnd_name)
|
||||
io.capture_keys(wnd_name)
|
||||
|
||||
previews = None
|
||||
loss_history = None
|
||||
selected_preview = 0
|
||||
update_preview = False
|
||||
is_showing = False
|
||||
is_waiting_preview = False
|
||||
show_last_history_iters_count = 0
|
||||
iteration = 0
|
||||
batch_size = 1
|
||||
zoom = Zoom.ZOOM_100
|
||||
|
||||
while True:
|
||||
if not c2s.empty():
|
||||
input = c2s.get()
|
||||
op = input['op']
|
||||
if op == 'show':
|
||||
is_waiting_preview = False
|
||||
loss_history = input['loss_history'] if 'loss_history' in input.keys() else None
|
||||
previews = input['previews'] if 'previews' in input.keys() else None
|
||||
iteration = input['iter'] if 'iter' in input.keys() else 0
|
||||
#batch_size = input['batch_size'] if 'iter' in input.keys() else 1
|
||||
if previews is not None:
|
||||
update_preview = True
|
||||
elif op == 'close':
|
||||
break
|
||||
|
||||
if update_preview:
|
||||
update_preview = False
|
||||
selected_preview = selected_preview % len(previews)
|
||||
preview_pane_image = create_preview_pane_image(previews,
|
||||
selected_preview,
|
||||
loss_history,
|
||||
show_last_history_iters_count,
|
||||
iteration,
|
||||
batch_size,
|
||||
zoom)
|
||||
io.show_image(wnd_name, preview_pane_image)
|
||||
is_showing = True
|
||||
|
||||
key_events = io.get_key_events(wnd_name)
|
||||
key, chr_key, ctrl_pressed, alt_pressed, shift_pressed = key_events[-1] if len(key_events) > 0 else (0,0,False,False,False)
|
||||
|
||||
if key == ord('\n') or key == ord('\r'):
|
||||
s2c.put ( {'op': 'close'} )
|
||||
elif key == ord('s'):
|
||||
s2c.put ( {'op': 'save'} )
|
||||
elif key == ord('p'):
|
||||
if not is_waiting_preview:
|
||||
is_waiting_preview = True
|
||||
s2c.put ( {'op': 'preview'} )
|
||||
elif key == ord('l'):
|
||||
if show_last_history_iters_count == 0:
|
||||
show_last_history_iters_count = 5000
|
||||
elif show_last_history_iters_count == 5000:
|
||||
show_last_history_iters_count = 10000
|
||||
elif show_last_history_iters_count == 10000:
|
||||
show_last_history_iters_count = 50000
|
||||
elif show_last_history_iters_count == 50000:
|
||||
show_last_history_iters_count = 100000
|
||||
elif show_last_history_iters_count == 100000:
|
||||
show_last_history_iters_count = 0
|
||||
update_preview = True
|
||||
elif key == ord(' '):
|
||||
selected_preview = (selected_preview + 1) % len(previews)
|
||||
update_preview = True
|
||||
elif key == ord('-'):
|
||||
zoom = zoom.prev()
|
||||
update_preview = True
|
||||
elif key == ord('=') or key == ord('+'):
|
||||
zoom = zoom.next()
|
||||
update_preview = True
|
||||
try:
|
||||
io.process_messages(0.1)
|
||||
except KeyboardInterrupt:
|
||||
s2c.put ( {'op': 'close'} )
|
||||
|
||||
io.destroy_all_windows()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue