mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
initial
This commit is contained in:
parent
73de93b4f1
commit
6bd5a44264
71 changed files with 8448 additions and 0 deletions
264
utils/image_utils.py
Normal file
264
utils/image_utils.py
Normal file
|
@ -0,0 +1,264 @@
|
|||
import sys
|
||||
from utils import random_utils
|
||||
import numpy as np
|
||||
import cv2
|
||||
import localization
|
||||
from scipy.spatial import Delaunay
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
def channel_hist_match(source, template, mask=None):
|
||||
# Code borrowed from:
|
||||
# https://stackoverflow.com/questions/32655686/histogram-matching-of-two-images-in-python-2-x
|
||||
masked_source = source
|
||||
masked_template = template
|
||||
|
||||
if mask is not None:
|
||||
masked_source = source * mask
|
||||
masked_template = template * mask
|
||||
|
||||
oldshape = source.shape
|
||||
source = source.ravel()
|
||||
template = template.ravel()
|
||||
masked_source = masked_source.ravel()
|
||||
masked_template = masked_template.ravel()
|
||||
s_values, bin_idx, s_counts = np.unique(source, return_inverse=True,
|
||||
return_counts=True)
|
||||
t_values, t_counts = np.unique(template, return_counts=True)
|
||||
ms_values, mbin_idx, ms_counts = np.unique(source, return_inverse=True,
|
||||
return_counts=True)
|
||||
mt_values, mt_counts = np.unique(template, return_counts=True)
|
||||
|
||||
s_quantiles = np.cumsum(s_counts).astype(np.float64)
|
||||
s_quantiles /= s_quantiles[-1]
|
||||
t_quantiles = np.cumsum(t_counts).astype(np.float64)
|
||||
t_quantiles /= t_quantiles[-1]
|
||||
interp_t_values = np.interp(s_quantiles, t_quantiles, t_values)
|
||||
|
||||
return interp_t_values[bin_idx].reshape(oldshape)
|
||||
|
||||
def color_hist_match(src_im, tar_im, mask=None):
|
||||
h,w,c = src_im.shape
|
||||
matched_R = channel_hist_match(src_im[:,:,0], tar_im[:,:,0], mask)
|
||||
matched_G = channel_hist_match(src_im[:,:,1], tar_im[:,:,1], mask)
|
||||
matched_B = channel_hist_match(src_im[:,:,2], tar_im[:,:,2], mask)
|
||||
|
||||
to_stack = (matched_R, matched_G, matched_B)
|
||||
for i in range(3, c):
|
||||
to_stack += ( src_im[:,:,i],)
|
||||
|
||||
|
||||
matched = np.stack(to_stack, axis=-1).astype(src_im.dtype)
|
||||
return matched
|
||||
|
||||
|
||||
pil_fonts = {}
|
||||
def _get_pil_font (font, size):
|
||||
global pil_fonts
|
||||
try:
|
||||
font_str_id = '%s_%d' % (font, size)
|
||||
if font_str_id not in pil_fonts.keys():
|
||||
pil_fonts[font_str_id] = ImageFont.truetype(font + ".ttf", size=size, encoding="unic")
|
||||
pil_font = pil_fonts[font_str_id]
|
||||
return pil_font
|
||||
except:
|
||||
return ImageFont.load_default()
|
||||
|
||||
def get_text_image( shape, text, color=(1,1,1), border=0.2, font=None):
|
||||
try:
|
||||
size = shape[1]
|
||||
pil_font = _get_pil_font( localization.get_default_ttf_font_name() , size)
|
||||
text_width, text_height = pil_font.getsize(text)
|
||||
|
||||
canvas = Image.new('RGB', shape[0:2], (0,0,0) )
|
||||
draw = ImageDraw.Draw(canvas)
|
||||
offset = ( 0, 0)
|
||||
draw.text(offset, text, font=pil_font, fill=tuple((np.array(color)*255).astype(np.int)) )
|
||||
|
||||
result = np.asarray(canvas) / 255
|
||||
if shape[2] != 3:
|
||||
result = np.concatenate ( (result, np.ones ( (shape[1],) + (shape[0],) + (shape[2]-3,)) ), axis=2 )
|
||||
|
||||
return result
|
||||
except:
|
||||
return np.zeros ( (shape[1], shape[0], shape[2]), dtype=np.float32 )
|
||||
|
||||
def draw_text( image, rect, text, color=(1,1,1), border=0.2, font=None):
|
||||
h,w,c = image.shape
|
||||
|
||||
l,t,r,b = rect
|
||||
l = np.clip (l, 0, w-1)
|
||||
r = np.clip (r, 0, w-1)
|
||||
t = np.clip (t, 0, h-1)
|
||||
b = np.clip (b, 0, h-1)
|
||||
|
||||
image[t:b, l:r] += get_text_image ( (r-l,b-t,c) , text, color, border, font )
|
||||
|
||||
def draw_text_lines (image, rect, text_lines, color=(1,1,1), border=0.2, font=None):
|
||||
text_lines_len = len(text_lines)
|
||||
if text_lines_len == 0:
|
||||
return
|
||||
|
||||
l,t,r,b = rect
|
||||
h = b-t
|
||||
h_per_line = h // text_lines_len
|
||||
|
||||
for i in range(0, text_lines_len):
|
||||
draw_text (image, (l, i*h_per_line, r, (i+1)*h_per_line), text_lines[i], color, border, font)
|
||||
|
||||
def get_draw_text_lines ( image, rect, text_lines, color=(1,1,1), border=0.2, font=None):
|
||||
image = np.zeros ( image.shape, dtype=np.float )
|
||||
draw_text_lines ( image, rect, text_lines, color, border, font)
|
||||
return image
|
||||
|
||||
|
||||
def draw_polygon (image, points, color, thickness = 1):
|
||||
points_len = len(points)
|
||||
for i in range (0, points_len):
|
||||
p0 = tuple( points[i] )
|
||||
p1 = tuple( points[ (i+1) % points_len] )
|
||||
cv2.line (image, p0, p1, color, thickness=thickness)
|
||||
|
||||
def draw_rect(image, rect, color, thickness=1):
|
||||
l,t,r,b = rect
|
||||
draw_polygon (image, [ (l,t), (r,t), (r,b), (l,b ) ], color, thickness)
|
||||
|
||||
def rectContains(rect, point) :
|
||||
return not (point[0] < rect[0] or point[0] >= rect[2] or point[1] < rect[1] or point[1] >= rect[3])
|
||||
|
||||
def applyAffineTransform(src, srcTri, dstTri, size) :
|
||||
warpMat = cv2.getAffineTransform( np.float32(srcTri), np.float32(dstTri) )
|
||||
return cv2.warpAffine( src, warpMat, (size[0], size[1]), None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101 )
|
||||
|
||||
def morphTriangle(dst_img, src_img, st, dt) :
|
||||
(h,w,c) = dst_img.shape
|
||||
sr = np.array( cv2.boundingRect(np.float32(st)) )
|
||||
dr = np.array( cv2.boundingRect(np.float32(dt)) )
|
||||
sRect = st - sr[0:2]
|
||||
dRect = dt - dr[0:2]
|
||||
d_mask = np.zeros((dr[3], dr[2], c), dtype = np.float32)
|
||||
cv2.fillConvexPoly(d_mask, np.int32(dRect), (1.0,)*c, 8, 0);
|
||||
imgRect = src_img[sr[1]:sr[1] + sr[3], sr[0]:sr[0] + sr[2]]
|
||||
size = (dr[2], dr[3])
|
||||
warpImage1 = applyAffineTransform(imgRect, sRect, dRect, size)
|
||||
dst_img[dr[1]:dr[1]+dr[3], dr[0]:dr[0]+dr[2]] = dst_img[dr[1]:dr[1]+dr[3], dr[0]:dr[0]+dr[2]]*(1-d_mask) + warpImage1 * d_mask
|
||||
|
||||
def morph_by_points (image, sp, dp):
|
||||
if sp.shape != dp.shape:
|
||||
raise ValueError ('morph_by_points() sp.shape != dp.shape')
|
||||
(h,w,c) = image.shape
|
||||
|
||||
result_image = np.zeros(image.shape, dtype = image.dtype)
|
||||
|
||||
for tri in Delaunay(dp).simplices:
|
||||
morphTriangle(result_image, image, sp[tri], dp[tri])
|
||||
|
||||
return result_image
|
||||
|
||||
def equalize_and_stack_square (images, axis=1):
|
||||
max_c = max ([ 1 if len(image.shape) == 2 else image.shape[2] for image in images ] )
|
||||
|
||||
target_wh = 99999
|
||||
for i,image in enumerate(images):
|
||||
if len(image.shape) == 2:
|
||||
h,w = image.shape
|
||||
c = 1
|
||||
else:
|
||||
h,w,c = image.shape
|
||||
|
||||
if h < target_wh:
|
||||
target_wh = h
|
||||
|
||||
if w < target_wh:
|
||||
target_wh = w
|
||||
|
||||
for i,image in enumerate(images):
|
||||
if len(image.shape) == 2:
|
||||
h,w = image.shape
|
||||
c = 1
|
||||
else:
|
||||
h,w,c = image.shape
|
||||
|
||||
if c < max_c:
|
||||
if c == 1:
|
||||
if len(image.shape) == 2:
|
||||
image = np.expand_dims ( image, -1 )
|
||||
image = np.concatenate ( (image,)*max_c, -1 )
|
||||
elif c == 2: #GA
|
||||
image = np.expand_dims ( image[...,0], -1 )
|
||||
image = np.concatenate ( (image,)*max_c, -1 )
|
||||
else:
|
||||
image = np.concatenate ( (image, np.ones((h,w,max_c - c))), -1 )
|
||||
|
||||
if h != target_wh or w != target_wh:
|
||||
image = cv2.resize ( image, (target_wh, target_wh) )
|
||||
h,w,c = image.shape
|
||||
|
||||
images[i] = image
|
||||
|
||||
return np.concatenate ( images, axis = 1 )
|
||||
|
||||
def bgr2hsv (img):
|
||||
return cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
||||
|
||||
def hsv2bgr (img):
|
||||
return cv2.cvtColor(img, cv2.COLOR_HSV2BGR)
|
||||
|
||||
def bgra2hsva (img):
|
||||
return np.concatenate ( (cv2.cvtColor(img[...,0:3], cv2.COLOR_BGR2HSV ), np.expand_dims (img[...,3], -1)), -1 )
|
||||
|
||||
def bgra2hsva_list (imgs):
|
||||
return [ bgra2hsva(img) for img in imgs ]
|
||||
|
||||
def hsva2bgra (img):
|
||||
return np.concatenate ( (cv2.cvtColor(img[...,0:3], cv2.COLOR_HSV2BGR ), np.expand_dims (img[...,3], -1)), -1 )
|
||||
|
||||
def hsva2bgra_list (imgs):
|
||||
return [ hsva2bgra(img) for img in imgs ]
|
||||
|
||||
def gen_warp_params (source, flip, rotation_range=[-10,10], scale_range=[-0.5, 0.5], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05] ):
|
||||
h,w,c = source.shape
|
||||
if (h != w) or (w != 64 and w != 128 and w != 256 and w != 512 and w != 1024):
|
||||
raise ValueError ('TrainingDataGenerator accepts only square power of 2 images.')
|
||||
|
||||
rotation = np.random.uniform( rotation_range[0], rotation_range[1] )
|
||||
scale = np.random.uniform(1 +scale_range[0], 1 +scale_range[1])
|
||||
tx = np.random.uniform( tx_range[0], tx_range[1] )
|
||||
ty = np.random.uniform( ty_range[0], ty_range[1] )
|
||||
|
||||
#random warp by grid
|
||||
cell_size = [ w // (2**i) for i in range(1,4) ] [ np.random.randint(3) ]
|
||||
cell_count = w // cell_size + 1
|
||||
|
||||
grid_points = np.linspace( 0, w, cell_count)
|
||||
mapx = np.broadcast_to(grid_points, (cell_count, cell_count)).copy()
|
||||
mapy = mapx.T
|
||||
|
||||
mapx[1:-1,1:-1] = mapx[1:-1,1:-1] + random_utils.random_normal( size=(cell_count-2, cell_count-2) )*(cell_size*0.24)
|
||||
mapy[1:-1,1:-1] = mapy[1:-1,1:-1] + random_utils.random_normal( size=(cell_count-2, cell_count-2) )*(cell_size*0.24)
|
||||
|
||||
half_cell_size = cell_size // 2
|
||||
|
||||
mapx = cv2.resize(mapx, (w+cell_size,)*2 )[half_cell_size:-half_cell_size-1,half_cell_size:-half_cell_size-1].astype(np.float32)
|
||||
mapy = cv2.resize(mapy, (w+cell_size,)*2 )[half_cell_size:-half_cell_size-1,half_cell_size:-half_cell_size-1].astype(np.float32)
|
||||
|
||||
#random transform
|
||||
random_transform_mat = cv2.getRotationMatrix2D((w // 2, w // 2), rotation, scale)
|
||||
random_transform_mat[:, 2] += (tx*w, ty*w)
|
||||
|
||||
params = dict()
|
||||
params['mapx'] = mapx
|
||||
params['mapy'] = mapy
|
||||
params['rmat'] = random_transform_mat
|
||||
params['w'] = w
|
||||
params['flip'] = flip and np.random.randint(10) < 4
|
||||
|
||||
return params
|
||||
|
||||
def warp_by_params (params, img, warp, transform, flip):
|
||||
if warp:
|
||||
img = cv2.remap(img, params['mapx'], params['mapy'], cv2.INTER_LANCZOS4 )
|
||||
if transform:
|
||||
img = cv2.warpAffine( img, params['rmat'], (params['w'], params['w']), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_LANCZOS4 )
|
||||
if flip and params['flip']:
|
||||
img = img[:,::-1,:]
|
||||
return img
|
Loading…
Add table
Add a link
Reference in a new issue