This commit is contained in:
iperov 2018-06-04 17:12:43 +04:00
parent 73de93b4f1
commit 6bd5a44264
71 changed files with 8448 additions and 0 deletions

378
mainscripts/Extractor.py Normal file
View file

@ -0,0 +1,378 @@
import traceback
import os
import sys
import time
import multiprocessing
from tqdm import tqdm
from pathlib import Path
import numpy as np
import cv2
from utils import Path_utils
from utils.AlignedPNG import AlignedPNG
from utils import image_utils
from facelib import FaceType
import facelib
import gpufmkmgr
from utils.SubprocessorBase import SubprocessorBase
class ExtractSubprocessor(SubprocessorBase):
#override
def __init__(self, input_data, type, image_size, face_type, debug, multi_gpu=False, manual=False, manual_window_size=0, detector=None, output_path=None ):
self.input_data = input_data
self.type = type
self.image_size = image_size
self.face_type = face_type
self.debug = debug
self.multi_gpu = multi_gpu
self.detector = detector
self.output_path = output_path
self.manual = manual
self.manual_window_size = manual_window_size
self.result = []
no_response_time_sec = 60 if not self.manual else 999999
super().__init__('Extractor', no_response_time_sec)
#override
def onHostClientsInitialized(self):
if self.manual == True:
self.wnd_name = 'Manual pass'
cv2.namedWindow(self.wnd_name)
self.landmarks = None
self.param_x = -1
self.param_y = -1
self.param_rect_size = -1
self.param = {'x': 0, 'y': 0, 'rect_size' : 5}
def onMouse(event, x, y, flags, param):
if event == cv2.EVENT_MOUSEWHEEL:
mod = 1 if flags > 0 else -1
param['rect_size'] = max (5, param['rect_size'] + 10*mod)
else:
param['x'] = x
param['y'] = y
cv2.setMouseCallback(self.wnd_name, onMouse, self.param)
def get_devices_for_type (self, type, multi_gpu):
if (type == 'rects' or type == 'landmarks'):
if not multi_gpu:
devices = [gpufmkmgr.getBestDeviceIdx()]
else:
devices = gpufmkmgr.getDevicesWithAtLeastTotalMemoryGB(2)
devices = [ (idx, gpufmkmgr.getDeviceName(idx), gpufmkmgr.getDeviceVRAMTotalGb(idx) ) for idx in devices]
elif type == 'final':
devices = [ (i, 'CPU%d' % (i), 0 ) for i in range(0, multiprocessing.cpu_count()) ]
return devices
#override
def process_info_generator(self):
for (device_idx, device_name, device_total_vram_gb) in self.get_devices_for_type(self.type, self.multi_gpu):
num_processes = 1
if not self.manual and self.type == 'rects' and self.detector == 'mt':
num_processes = int ( max (1, device_total_vram_gb / 2) )
for i in range(0, num_processes ):
device_name_for_process = device_name if num_processes == 1 else '%s #%d' % (device_name,i)
yield device_name_for_process, {}, {'type' : self.type,
'device_idx' : device_idx,
'device_name' : device_name_for_process,
'image_size': self.image_size,
'face_type': self.face_type,
'debug': self.debug,
'output_dir': str(self.output_path),
'detector': self.detector}
#override
def get_no_process_started_message(self):
if (self.type == 'rects' or self.type == 'landmarks'):
print ( 'You have no capable GPUs. Try to close programs which can consume VRAM, and run again.')
elif self.type == 'final':
print ( 'Unable to start CPU processes.')
#override
def onHostGetProgressBarDesc(self):
return None
#override
def onHostGetProgressBarLen(self):
return len (self.input_data)
#override
def onHostGetData(self):
if not self.manual:
if len (self.input_data) > 0:
return self.input_data.pop(0)
else:
while len (self.input_data) > 0:
data = self.input_data[0]
filename, faces = data
is_frame_done = False
if len(faces) == 0:
self.original_image = cv2.imread(filename)
(h,w,c) = self.original_image.shape
self.view_scale = 1.0 if self.manual_window_size == 0 else self.manual_window_size / (w if w > h else h)
self.original_image = cv2.resize (self.original_image, ( int(w*self.view_scale), int(h*self.view_scale) ), interpolation=cv2.INTER_LINEAR)
self.text_lines_img = (image_utils.get_draw_text_lines ( self.original_image, (0,0, self.original_image.shape[1], min(100, self.original_image.shape[0]) ),
[ 'Match landmarks with face exactly.',
'[Enter] - confirm frame',
'[Space] - skip frame',
'[Mouse wheel] - change rect'
], (1, 1, 1) )*255).astype(np.uint8)
while True:
key = cv2.waitKey(1) & 0xFF
if key == ord('\r') or key == ord('\n'):
faces.append ( [(self.rect), self.landmarks] )
is_frame_done = True
break
elif key == ord(' '):
is_frame_done = True
break
if self.param_x != self.param['x'] / self.view_scale or \
self.param_y != self.param['y'] / self.view_scale or \
self.param_rect_size != self.param['rect_size']:
self.param_x = self.param['x'] / self.view_scale
self.param_y = self.param['y'] / self.view_scale
self.param_rect_size = self.param['rect_size']
self.rect = (self.param_x-self.param_rect_size, self.param_y-self.param_rect_size, self.param_x+self.param_rect_size, self.param_y+self.param_rect_size)
return [filename, [self.rect]]
else:
is_frame_done = True
if is_frame_done:
self.result.append ( data )
self.input_data.pop(0)
self.inc_progress_bar(1)
return None
#override
def onHostDataReturn (self, data):
if not self.manual:
self.input_data.insert(0, data)
#override
def onClientInitialize(self, client_dict):
self.safe_print ('Running on %s.' % (client_dict['device_name']) )
self.type = client_dict['type']
self.image_size = client_dict['image_size']
self.face_type = client_dict['face_type']
self.device_idx = client_dict['device_idx']
self.output_path = Path(client_dict['output_dir']) if 'output_dir' in client_dict.keys() else None
self.debug = client_dict['debug']
self.detector = client_dict['detector']
self.keras = None
self.tf = None
self.tf_session = None
self.e = None
if self.type == 'rects':
if self.detector is not None:
if self.detector == 'mt':
self.tf = gpufmkmgr.import_tf ([self.device_idx], allow_growth=True)
self.tf_session = gpufmkmgr.get_tf_session()
self.keras = gpufmkmgr.import_keras()
self.e = facelib.MTCExtractor(self.keras, self.tf, self.tf_session)
elif self.detector == 'dlib':
self.dlib = gpufmkmgr.import_dlib( self.device_idx )
self.e = facelib.DLIBExtractor(self.dlib)
self.e.__enter__()
elif self.type == 'landmarks':
self.tf = gpufmkmgr.import_tf([self.device_idx], allow_growth=True)
self.tf_session = gpufmkmgr.get_tf_session()
self.keras = gpufmkmgr.import_keras()
self.e = facelib.LandmarksExtractor(self.keras)
self.e.__enter__()
elif self.type == 'final':
pass
return None
#override
def onClientFinalize(self):
if self.e is not None:
self.e.__exit__()
#override
def onClientProcessData(self, data):
filename_path = Path( data[0] )
image = cv2.imread( str(filename_path) )
if image is None:
print ( 'Failed to extract %s, reason: cv2.imread() fail.' % ( str(filename_path) ) )
else:
if self.type == 'rects':
rects = self.e.extract_from_bgr (image)
return [str(filename_path), rects]
elif self.type == 'landmarks':
rects = data[1]
landmarks = self.e.extract_from_bgr (image, rects)
return [str(filename_path), landmarks]
elif self.type == 'final':
result = []
faces = data[1]
if self.debug:
debug_output_file = '{}_{}'.format( str(Path(str(self.output_path) + '_debug') / filename_path.stem), 'debug.png')
debug_image = image.copy()
for (face_idx, face) in enumerate(faces):
output_file = '{}_{}{}'.format(str(self.output_path / filename_path.stem), str(face_idx), '.png')
rect = face[0]
image_landmarks = np.array(face[1])
if self.debug:
facelib.LandmarksProcessor.draw_rect_landmarks (debug_image, rect, image_landmarks, self.image_size, self.face_type)
if self.face_type == FaceType.MARK_ONLY:
face_image = image
face_image_landmarks = image_landmarks
else:
image_to_face_mat = facelib.LandmarksProcessor.get_transform_mat (image_landmarks, self.image_size, self.face_type)
face_image = cv2.warpAffine(image, image_to_face_mat, (self.image_size, self.image_size), cv2.INTER_LANCZOS4)
face_image_landmarks = facelib.LandmarksProcessor.transform_points (image_landmarks, image_to_face_mat)
cv2.imwrite(output_file, face_image)
a_png = AlignedPNG.load (output_file)
d = {
'face_type': FaceType.toString(self.face_type),
'landmarks': face_image_landmarks.tolist(),
'yaw_value': facelib.LandmarksProcessor.calc_face_yaw (face_image_landmarks),
'pitch_value': facelib.LandmarksProcessor.calc_face_pitch (face_image_landmarks),
'source_filename': filename_path.name,
'source_rect': rect,
'source_landmarks': image_landmarks.tolist()
}
a_png.setFaceswapDictData (d)
a_png.save(output_file)
result.append (output_file)
if self.debug:
cv2.imwrite(debug_output_file, debug_image )
return result
return None
#overridable
def onClientGetDataName (self, data):
#return string identificator of your data
return data[0]
#override
def onHostResult (self, data, result):
if self.manual == True:
self.landmarks = result[1][0][1]
image = cv2.addWeighted (self.original_image,1.0,self.text_lines_img,1.0,0)
view_rect = (np.array(self.rect) * self.view_scale).astype(np.int).tolist()
view_landmarks = (np.array(self.landmarks) * self.view_scale).astype(np.int).tolist()
facelib.LandmarksProcessor.draw_rect_landmarks (image, view_rect, view_landmarks, self.image_size, self.face_type)
cv2.imshow (self.wnd_name, image)
return 0
else:
if self.type == 'rects':
self.result.append ( result )
elif self.type == 'landmarks':
self.result.append ( result )
elif self.type == 'final':
self.result += result
return 1
#override
def onHostProcessEnd(self):
if self.manual == True:
cv2.destroyAllWindows()
#override
def get_start_return(self):
return self.result
'''
detector
'dlib'
'mt'
'manual'
face_type
'full_face'
'avatar'
'''
def main (input_dir, output_dir, debug, detector='mt', multi_gpu=True, manual_fix=False, manual_window_size=0, image_size=256, face_type='full_face'):
print ("Running extractor.\r\n")
input_path = Path(input_dir)
output_path = Path(output_dir)
face_type = FaceType.fromString(face_type)
if not input_path.exists():
print('Input directory not found. Please ensure it exists.')
return
if output_path.exists():
for filename in Path_utils.get_image_paths(output_path):
Path(filename).unlink()
else:
output_path.mkdir(parents=True, exist_ok=True)
if debug:
debug_output_path = Path(str(output_path) + '_debug')
if debug_output_path.exists():
for filename in Path_utils.get_image_paths(debug_output_path):
Path(filename).unlink()
else:
debug_output_path.mkdir(parents=True, exist_ok=True)
input_path_image_paths = Path_utils.get_image_unique_filestem_paths(input_path, verbose=True)
images_found = len(input_path_image_paths)
faces_detected = 0
if images_found != 0:
if detector == 'manual':
print ('Performing manual extract...')
extracted_faces = ExtractSubprocessor ([ (filename,[]) for filename in input_path_image_paths ], 'landmarks', image_size, face_type, debug, manual=True, manual_window_size=manual_window_size).process()
else:
print ('Performing 1st pass...')
extracted_rects = ExtractSubprocessor ([ (x,) for x in input_path_image_paths ], 'rects', image_size, face_type, debug, multi_gpu=multi_gpu, manual=False, detector=detector).process()
print ('Performing 2nd pass...')
extracted_faces = ExtractSubprocessor (extracted_rects, 'landmarks', image_size, face_type, debug, multi_gpu=multi_gpu, manual=False).process()
if manual_fix:
print ('Performing manual fix...')
if all ( np.array ( [ len(data[1]) > 0 for data in extracted_faces] ) == True ):
print ('All faces are detected, manual fix not needed.')
else:
extracted_faces = ExtractSubprocessor (extracted_faces, 'landmarks', image_size, face_type, debug, manual=True, manual_window_size=manual_window_size).process()
if len(extracted_faces) > 0:
print ('Performing 3rd pass...')
final_imgs_paths = ExtractSubprocessor (extracted_faces, 'final', image_size, face_type, debug, multi_gpu=multi_gpu, manual=False, output_path=output_path).process()
faces_detected = len(final_imgs_paths)
print('-------------------------')
print('Images found: %d' % (images_found) )
print('Faces detected: %d' % (faces_detected) )
print('-------------------------')