mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
initial
This commit is contained in:
parent
73de93b4f1
commit
6bd5a44264
71 changed files with 8448 additions and 0 deletions
378
mainscripts/Extractor.py
Normal file
378
mainscripts/Extractor.py
Normal file
|
@ -0,0 +1,378 @@
|
|||
import traceback
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import multiprocessing
|
||||
from tqdm import tqdm
|
||||
from pathlib import Path
|
||||
import numpy as np
|
||||
import cv2
|
||||
from utils import Path_utils
|
||||
from utils.AlignedPNG import AlignedPNG
|
||||
from utils import image_utils
|
||||
from facelib import FaceType
|
||||
import facelib
|
||||
import gpufmkmgr
|
||||
|
||||
from utils.SubprocessorBase import SubprocessorBase
|
||||
class ExtractSubprocessor(SubprocessorBase):
|
||||
|
||||
#override
|
||||
def __init__(self, input_data, type, image_size, face_type, debug, multi_gpu=False, manual=False, manual_window_size=0, detector=None, output_path=None ):
|
||||
self.input_data = input_data
|
||||
self.type = type
|
||||
self.image_size = image_size
|
||||
self.face_type = face_type
|
||||
self.debug = debug
|
||||
self.multi_gpu = multi_gpu
|
||||
self.detector = detector
|
||||
self.output_path = output_path
|
||||
self.manual = manual
|
||||
self.manual_window_size = manual_window_size
|
||||
self.result = []
|
||||
|
||||
no_response_time_sec = 60 if not self.manual else 999999
|
||||
super().__init__('Extractor', no_response_time_sec)
|
||||
|
||||
#override
|
||||
def onHostClientsInitialized(self):
|
||||
if self.manual == True:
|
||||
self.wnd_name = 'Manual pass'
|
||||
cv2.namedWindow(self.wnd_name)
|
||||
|
||||
self.landmarks = None
|
||||
self.param_x = -1
|
||||
self.param_y = -1
|
||||
self.param_rect_size = -1
|
||||
self.param = {'x': 0, 'y': 0, 'rect_size' : 5}
|
||||
|
||||
def onMouse(event, x, y, flags, param):
|
||||
if event == cv2.EVENT_MOUSEWHEEL:
|
||||
mod = 1 if flags > 0 else -1
|
||||
param['rect_size'] = max (5, param['rect_size'] + 10*mod)
|
||||
else:
|
||||
param['x'] = x
|
||||
param['y'] = y
|
||||
|
||||
cv2.setMouseCallback(self.wnd_name, onMouse, self.param)
|
||||
|
||||
def get_devices_for_type (self, type, multi_gpu):
|
||||
if (type == 'rects' or type == 'landmarks'):
|
||||
if not multi_gpu:
|
||||
devices = [gpufmkmgr.getBestDeviceIdx()]
|
||||
else:
|
||||
devices = gpufmkmgr.getDevicesWithAtLeastTotalMemoryGB(2)
|
||||
devices = [ (idx, gpufmkmgr.getDeviceName(idx), gpufmkmgr.getDeviceVRAMTotalGb(idx) ) for idx in devices]
|
||||
|
||||
elif type == 'final':
|
||||
devices = [ (i, 'CPU%d' % (i), 0 ) for i in range(0, multiprocessing.cpu_count()) ]
|
||||
|
||||
return devices
|
||||
|
||||
#override
|
||||
def process_info_generator(self):
|
||||
for (device_idx, device_name, device_total_vram_gb) in self.get_devices_for_type(self.type, self.multi_gpu):
|
||||
num_processes = 1
|
||||
if not self.manual and self.type == 'rects' and self.detector == 'mt':
|
||||
num_processes = int ( max (1, device_total_vram_gb / 2) )
|
||||
|
||||
for i in range(0, num_processes ):
|
||||
device_name_for_process = device_name if num_processes == 1 else '%s #%d' % (device_name,i)
|
||||
yield device_name_for_process, {}, {'type' : self.type,
|
||||
'device_idx' : device_idx,
|
||||
'device_name' : device_name_for_process,
|
||||
'image_size': self.image_size,
|
||||
'face_type': self.face_type,
|
||||
'debug': self.debug,
|
||||
'output_dir': str(self.output_path),
|
||||
'detector': self.detector}
|
||||
|
||||
#override
|
||||
def get_no_process_started_message(self):
|
||||
if (self.type == 'rects' or self.type == 'landmarks'):
|
||||
print ( 'You have no capable GPUs. Try to close programs which can consume VRAM, and run again.')
|
||||
elif self.type == 'final':
|
||||
print ( 'Unable to start CPU processes.')
|
||||
|
||||
#override
|
||||
def onHostGetProgressBarDesc(self):
|
||||
return None
|
||||
|
||||
#override
|
||||
def onHostGetProgressBarLen(self):
|
||||
return len (self.input_data)
|
||||
|
||||
#override
|
||||
def onHostGetData(self):
|
||||
if not self.manual:
|
||||
if len (self.input_data) > 0:
|
||||
return self.input_data.pop(0)
|
||||
else:
|
||||
while len (self.input_data) > 0:
|
||||
data = self.input_data[0]
|
||||
filename, faces = data
|
||||
is_frame_done = False
|
||||
if len(faces) == 0:
|
||||
self.original_image = cv2.imread(filename)
|
||||
|
||||
(h,w,c) = self.original_image.shape
|
||||
self.view_scale = 1.0 if self.manual_window_size == 0 else self.manual_window_size / (w if w > h else h)
|
||||
self.original_image = cv2.resize (self.original_image, ( int(w*self.view_scale), int(h*self.view_scale) ), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
self.text_lines_img = (image_utils.get_draw_text_lines ( self.original_image, (0,0, self.original_image.shape[1], min(100, self.original_image.shape[0]) ),
|
||||
[ 'Match landmarks with face exactly.',
|
||||
'[Enter] - confirm frame',
|
||||
'[Space] - skip frame',
|
||||
'[Mouse wheel] - change rect'
|
||||
], (1, 1, 1) )*255).astype(np.uint8)
|
||||
|
||||
while True:
|
||||
key = cv2.waitKey(1) & 0xFF
|
||||
|
||||
if key == ord('\r') or key == ord('\n'):
|
||||
faces.append ( [(self.rect), self.landmarks] )
|
||||
is_frame_done = True
|
||||
break
|
||||
elif key == ord(' '):
|
||||
is_frame_done = True
|
||||
break
|
||||
|
||||
if self.param_x != self.param['x'] / self.view_scale or \
|
||||
self.param_y != self.param['y'] / self.view_scale or \
|
||||
self.param_rect_size != self.param['rect_size']:
|
||||
|
||||
self.param_x = self.param['x'] / self.view_scale
|
||||
self.param_y = self.param['y'] / self.view_scale
|
||||
self.param_rect_size = self.param['rect_size']
|
||||
|
||||
self.rect = (self.param_x-self.param_rect_size, self.param_y-self.param_rect_size, self.param_x+self.param_rect_size, self.param_y+self.param_rect_size)
|
||||
return [filename, [self.rect]]
|
||||
|
||||
else:
|
||||
is_frame_done = True
|
||||
|
||||
if is_frame_done:
|
||||
self.result.append ( data )
|
||||
self.input_data.pop(0)
|
||||
self.inc_progress_bar(1)
|
||||
|
||||
return None
|
||||
|
||||
#override
|
||||
def onHostDataReturn (self, data):
|
||||
if not self.manual:
|
||||
self.input_data.insert(0, data)
|
||||
|
||||
#override
|
||||
def onClientInitialize(self, client_dict):
|
||||
self.safe_print ('Running on %s.' % (client_dict['device_name']) )
|
||||
self.type = client_dict['type']
|
||||
self.image_size = client_dict['image_size']
|
||||
self.face_type = client_dict['face_type']
|
||||
self.device_idx = client_dict['device_idx']
|
||||
self.output_path = Path(client_dict['output_dir']) if 'output_dir' in client_dict.keys() else None
|
||||
self.debug = client_dict['debug']
|
||||
self.detector = client_dict['detector']
|
||||
|
||||
self.keras = None
|
||||
self.tf = None
|
||||
self.tf_session = None
|
||||
|
||||
self.e = None
|
||||
if self.type == 'rects':
|
||||
if self.detector is not None:
|
||||
if self.detector == 'mt':
|
||||
self.tf = gpufmkmgr.import_tf ([self.device_idx], allow_growth=True)
|
||||
self.tf_session = gpufmkmgr.get_tf_session()
|
||||
self.keras = gpufmkmgr.import_keras()
|
||||
self.e = facelib.MTCExtractor(self.keras, self.tf, self.tf_session)
|
||||
elif self.detector == 'dlib':
|
||||
self.dlib = gpufmkmgr.import_dlib( self.device_idx )
|
||||
self.e = facelib.DLIBExtractor(self.dlib)
|
||||
self.e.__enter__()
|
||||
|
||||
elif self.type == 'landmarks':
|
||||
self.tf = gpufmkmgr.import_tf([self.device_idx], allow_growth=True)
|
||||
self.tf_session = gpufmkmgr.get_tf_session()
|
||||
self.keras = gpufmkmgr.import_keras()
|
||||
self.e = facelib.LandmarksExtractor(self.keras)
|
||||
self.e.__enter__()
|
||||
|
||||
elif self.type == 'final':
|
||||
pass
|
||||
|
||||
return None
|
||||
|
||||
#override
|
||||
def onClientFinalize(self):
|
||||
if self.e is not None:
|
||||
self.e.__exit__()
|
||||
|
||||
#override
|
||||
def onClientProcessData(self, data):
|
||||
filename_path = Path( data[0] )
|
||||
|
||||
image = cv2.imread( str(filename_path) )
|
||||
if image is None:
|
||||
print ( 'Failed to extract %s, reason: cv2.imread() fail.' % ( str(filename_path) ) )
|
||||
else:
|
||||
if self.type == 'rects':
|
||||
rects = self.e.extract_from_bgr (image)
|
||||
return [str(filename_path), rects]
|
||||
|
||||
elif self.type == 'landmarks':
|
||||
rects = data[1]
|
||||
landmarks = self.e.extract_from_bgr (image, rects)
|
||||
return [str(filename_path), landmarks]
|
||||
|
||||
elif self.type == 'final':
|
||||
result = []
|
||||
faces = data[1]
|
||||
|
||||
if self.debug:
|
||||
debug_output_file = '{}_{}'.format( str(Path(str(self.output_path) + '_debug') / filename_path.stem), 'debug.png')
|
||||
debug_image = image.copy()
|
||||
|
||||
for (face_idx, face) in enumerate(faces):
|
||||
output_file = '{}_{}{}'.format(str(self.output_path / filename_path.stem), str(face_idx), '.png')
|
||||
|
||||
rect = face[0]
|
||||
image_landmarks = np.array(face[1])
|
||||
|
||||
if self.debug:
|
||||
facelib.LandmarksProcessor.draw_rect_landmarks (debug_image, rect, image_landmarks, self.image_size, self.face_type)
|
||||
|
||||
if self.face_type == FaceType.MARK_ONLY:
|
||||
face_image = image
|
||||
face_image_landmarks = image_landmarks
|
||||
else:
|
||||
image_to_face_mat = facelib.LandmarksProcessor.get_transform_mat (image_landmarks, self.image_size, self.face_type)
|
||||
face_image = cv2.warpAffine(image, image_to_face_mat, (self.image_size, self.image_size), cv2.INTER_LANCZOS4)
|
||||
face_image_landmarks = facelib.LandmarksProcessor.transform_points (image_landmarks, image_to_face_mat)
|
||||
|
||||
cv2.imwrite(output_file, face_image)
|
||||
|
||||
a_png = AlignedPNG.load (output_file)
|
||||
|
||||
d = {
|
||||
'face_type': FaceType.toString(self.face_type),
|
||||
'landmarks': face_image_landmarks.tolist(),
|
||||
'yaw_value': facelib.LandmarksProcessor.calc_face_yaw (face_image_landmarks),
|
||||
'pitch_value': facelib.LandmarksProcessor.calc_face_pitch (face_image_landmarks),
|
||||
'source_filename': filename_path.name,
|
||||
'source_rect': rect,
|
||||
'source_landmarks': image_landmarks.tolist()
|
||||
}
|
||||
a_png.setFaceswapDictData (d)
|
||||
a_png.save(output_file)
|
||||
|
||||
result.append (output_file)
|
||||
|
||||
if self.debug:
|
||||
cv2.imwrite(debug_output_file, debug_image )
|
||||
|
||||
return result
|
||||
return None
|
||||
|
||||
#overridable
|
||||
def onClientGetDataName (self, data):
|
||||
#return string identificator of your data
|
||||
return data[0]
|
||||
|
||||
#override
|
||||
def onHostResult (self, data, result):
|
||||
if self.manual == True:
|
||||
self.landmarks = result[1][0][1]
|
||||
|
||||
image = cv2.addWeighted (self.original_image,1.0,self.text_lines_img,1.0,0)
|
||||
view_rect = (np.array(self.rect) * self.view_scale).astype(np.int).tolist()
|
||||
view_landmarks = (np.array(self.landmarks) * self.view_scale).astype(np.int).tolist()
|
||||
facelib.LandmarksProcessor.draw_rect_landmarks (image, view_rect, view_landmarks, self.image_size, self.face_type)
|
||||
|
||||
cv2.imshow (self.wnd_name, image)
|
||||
return 0
|
||||
else:
|
||||
if self.type == 'rects':
|
||||
self.result.append ( result )
|
||||
elif self.type == 'landmarks':
|
||||
self.result.append ( result )
|
||||
elif self.type == 'final':
|
||||
self.result += result
|
||||
|
||||
return 1
|
||||
|
||||
#override
|
||||
def onHostProcessEnd(self):
|
||||
if self.manual == True:
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
#override
|
||||
def get_start_return(self):
|
||||
return self.result
|
||||
|
||||
'''
|
||||
detector
|
||||
'dlib'
|
||||
'mt'
|
||||
'manual'
|
||||
|
||||
face_type
|
||||
'full_face'
|
||||
'avatar'
|
||||
'''
|
||||
def main (input_dir, output_dir, debug, detector='mt', multi_gpu=True, manual_fix=False, manual_window_size=0, image_size=256, face_type='full_face'):
|
||||
print ("Running extractor.\r\n")
|
||||
|
||||
input_path = Path(input_dir)
|
||||
output_path = Path(output_dir)
|
||||
face_type = FaceType.fromString(face_type)
|
||||
|
||||
if not input_path.exists():
|
||||
print('Input directory not found. Please ensure it exists.')
|
||||
return
|
||||
|
||||
if output_path.exists():
|
||||
for filename in Path_utils.get_image_paths(output_path):
|
||||
Path(filename).unlink()
|
||||
else:
|
||||
output_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if debug:
|
||||
debug_output_path = Path(str(output_path) + '_debug')
|
||||
if debug_output_path.exists():
|
||||
for filename in Path_utils.get_image_paths(debug_output_path):
|
||||
Path(filename).unlink()
|
||||
else:
|
||||
debug_output_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
input_path_image_paths = Path_utils.get_image_unique_filestem_paths(input_path, verbose=True)
|
||||
images_found = len(input_path_image_paths)
|
||||
faces_detected = 0
|
||||
if images_found != 0:
|
||||
if detector == 'manual':
|
||||
print ('Performing manual extract...')
|
||||
extracted_faces = ExtractSubprocessor ([ (filename,[]) for filename in input_path_image_paths ], 'landmarks', image_size, face_type, debug, manual=True, manual_window_size=manual_window_size).process()
|
||||
else:
|
||||
print ('Performing 1st pass...')
|
||||
extracted_rects = ExtractSubprocessor ([ (x,) for x in input_path_image_paths ], 'rects', image_size, face_type, debug, multi_gpu=multi_gpu, manual=False, detector=detector).process()
|
||||
|
||||
print ('Performing 2nd pass...')
|
||||
extracted_faces = ExtractSubprocessor (extracted_rects, 'landmarks', image_size, face_type, debug, multi_gpu=multi_gpu, manual=False).process()
|
||||
|
||||
if manual_fix:
|
||||
print ('Performing manual fix...')
|
||||
|
||||
if all ( np.array ( [ len(data[1]) > 0 for data in extracted_faces] ) == True ):
|
||||
print ('All faces are detected, manual fix not needed.')
|
||||
else:
|
||||
extracted_faces = ExtractSubprocessor (extracted_faces, 'landmarks', image_size, face_type, debug, manual=True, manual_window_size=manual_window_size).process()
|
||||
|
||||
if len(extracted_faces) > 0:
|
||||
print ('Performing 3rd pass...')
|
||||
final_imgs_paths = ExtractSubprocessor (extracted_faces, 'final', image_size, face_type, debug, multi_gpu=multi_gpu, manual=False, output_path=output_path).process()
|
||||
faces_detected = len(final_imgs_paths)
|
||||
|
||||
print('-------------------------')
|
||||
print('Images found: %d' % (images_found) )
|
||||
print('Faces detected: %d' % (faces_detected) )
|
||||
print('-------------------------')
|
Loading…
Add table
Add a link
Reference in a new issue