mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
1
This commit is contained in:
parent
668513a507
commit
6b14741160
5 changed files with 375 additions and 31 deletions
198
samplelib/SampleGeneratorFacePerson.py
Normal file
198
samplelib/SampleGeneratorFacePerson.py
Normal file
|
@ -0,0 +1,198 @@
|
|||
import multiprocessing
|
||||
import traceback
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from facelib import LandmarksProcessor
|
||||
from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor,
|
||||
SampleType)
|
||||
from utils import iter_utils
|
||||
|
||||
|
||||
'''
|
||||
arg
|
||||
output_sample_types = [
|
||||
[SampleProcessor.TypeFlags, size, (optional) {} opts ] ,
|
||||
...
|
||||
]
|
||||
'''
|
||||
class SampleGeneratorFacePerson(SampleGeneratorBase):
|
||||
def __init__ (self, samples_path, debug=False, batch_size=1,
|
||||
sample_process_options=SampleProcessor.Options(),
|
||||
output_sample_types=[],
|
||||
person_id_mode=1,
|
||||
generators_count=2,
|
||||
generators_random_seed=None,
|
||||
**kwargs):
|
||||
|
||||
super().__init__(samples_path, debug, batch_size)
|
||||
self.sample_process_options = sample_process_options
|
||||
self.output_sample_types = output_sample_types
|
||||
self.person_id_mode = person_id_mode
|
||||
|
||||
if generators_random_seed is not None and len(generators_random_seed) != generators_count:
|
||||
raise ValueError("len(generators_random_seed) != generators_count")
|
||||
self.generators_random_seed = generators_random_seed
|
||||
|
||||
samples = SampleLoader.load (SampleType.FACE, self.samples_path, person_id_mode=True)
|
||||
|
||||
if person_id_mode==1:
|
||||
new_samples = []
|
||||
for s in samples:
|
||||
new_samples += s
|
||||
samples = new_samples
|
||||
np.random.shuffle(samples)
|
||||
|
||||
self.samples_len = len(samples)
|
||||
|
||||
if self.samples_len == 0:
|
||||
raise ValueError('No training data provided.')
|
||||
|
||||
if self.debug:
|
||||
self.generators_count = 1
|
||||
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (0, samples) )]
|
||||
else:
|
||||
self.generators_count = min ( generators_count, self.samples_len )
|
||||
|
||||
if person_id_mode==1:
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (i, samples[i::self.generators_count]) ) for i in range(self.generators_count) ]
|
||||
else:
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (i, samples) ) for i in range(self.generators_count) ]
|
||||
|
||||
self.generator_counter = -1
|
||||
|
||||
#overridable
|
||||
def get_total_sample_count(self):
|
||||
return self.samples_len
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
self.generator_counter += 1
|
||||
generator = self.generators[self.generator_counter % len(self.generators) ]
|
||||
return next(generator)
|
||||
|
||||
def batch_func(self, param ):
|
||||
generator_id, samples = param
|
||||
|
||||
if self.generators_random_seed is not None:
|
||||
np.random.seed ( self.generators_random_seed[generator_id] )
|
||||
|
||||
if self.person_id_mode==1:
|
||||
samples_len = len(samples)
|
||||
samples_idxs = [*range(samples_len)]
|
||||
shuffle_idxs = []
|
||||
elif self.person_id_mode==2:
|
||||
persons_count = len(samples)
|
||||
|
||||
person_idxs = []
|
||||
for j in range(persons_count):
|
||||
for i in range(j+1,persons_count):
|
||||
person_idxs += [ [i,j] ]
|
||||
|
||||
shuffle_person_idxs = []
|
||||
|
||||
samples_idxs = [None]*persons_count
|
||||
shuffle_idxs = [None]*persons_count
|
||||
|
||||
for i in range(persons_count):
|
||||
samples_idxs[i] = [*range(len(samples[i]))]
|
||||
shuffle_idxs[i] = []
|
||||
|
||||
while True:
|
||||
|
||||
if self.person_id_mode==2:
|
||||
if len(shuffle_person_idxs) == 0:
|
||||
shuffle_person_idxs = person_idxs.copy()
|
||||
np.random.shuffle(shuffle_person_idxs)
|
||||
person_ids = shuffle_person_idxs.pop()
|
||||
|
||||
|
||||
batches = None
|
||||
for n_batch in range(self.batch_size):
|
||||
|
||||
if self.person_id_mode==1:
|
||||
if len(shuffle_idxs) == 0:
|
||||
shuffle_idxs = samples_idxs.copy()
|
||||
np.random.shuffle(shuffle_idxs)
|
||||
|
||||
idx = shuffle_idxs.pop()
|
||||
sample = samples[ idx ]
|
||||
|
||||
try:
|
||||
x = SampleProcessor.process (sample, self.sample_process_options, self.output_sample_types, self.debug)
|
||||
except:
|
||||
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
|
||||
|
||||
if type(x) != tuple and type(x) != list:
|
||||
raise Exception('SampleProcessor.process returns NOT tuple/list')
|
||||
|
||||
if batches is None:
|
||||
batches = [ [] for _ in range(len(x)) ]
|
||||
|
||||
batches += [ [] ]
|
||||
i_person_id = len(batches)-1
|
||||
|
||||
for i in range(len(x)):
|
||||
batches[i].append ( x[i] )
|
||||
|
||||
batches[i_person_id].append ( np.array([sample.person_id]) )
|
||||
|
||||
|
||||
else:
|
||||
person_id1, person_id2 = person_ids
|
||||
|
||||
if len(shuffle_idxs[person_id1]) == 0:
|
||||
shuffle_idxs[person_id1] = samples_idxs[person_id1].copy()
|
||||
np.random.shuffle(shuffle_idxs[person_id1])
|
||||
|
||||
idx = shuffle_idxs[person_id1].pop()
|
||||
sample1 = samples[person_id1][idx]
|
||||
|
||||
if len(shuffle_idxs[person_id2]) == 0:
|
||||
shuffle_idxs[person_id2] = samples_idxs[person_id2].copy()
|
||||
np.random.shuffle(shuffle_idxs[person_id2])
|
||||
|
||||
idx = shuffle_idxs[person_id2].pop()
|
||||
sample2 = samples[person_id2][idx]
|
||||
|
||||
if sample1 is not None and sample2 is not None:
|
||||
try:
|
||||
x1 = SampleProcessor.process (sample1, self.sample_process_options, self.output_sample_types, self.debug)
|
||||
except:
|
||||
raise Exception ("Exception occured in sample %s. Error: %s" % (sample1.filename, traceback.format_exc() ) )
|
||||
|
||||
try:
|
||||
x2 = SampleProcessor.process (sample2, self.sample_process_options, self.output_sample_types, self.debug)
|
||||
except:
|
||||
raise Exception ("Exception occured in sample %s. Error: %s" % (sample2.filename, traceback.format_exc() ) )
|
||||
|
||||
x1_len = len(x1)
|
||||
if batches is None:
|
||||
batches = [ [] for _ in range(x1_len) ]
|
||||
batches += [ [] ]
|
||||
i_person_id1 = len(batches)-1
|
||||
|
||||
batches += [ [] for _ in range(len(x2)) ]
|
||||
batches += [ [] ]
|
||||
i_person_id2 = len(batches)-1
|
||||
|
||||
for i in range(x1_len):
|
||||
batches[i].append ( x1[i] )
|
||||
|
||||
for i in range(len(x2)):
|
||||
batches[x1_len+1+i].append ( x2[i] )
|
||||
|
||||
batches[i_person_id1].append ( np.array([sample1.person_id]) )
|
||||
|
||||
batches[i_person_id2].append ( np.array([sample2.person_id]) )
|
||||
|
||||
|
||||
|
||||
yield [ np.array(batch) for batch in batches]
|
||||
|
||||
@staticmethod
|
||||
def get_person_id_max_count(samples_path):
|
||||
return SampleLoader.get_person_id_max_count(samples_path)
|
Loading…
Add table
Add a link
Reference in a new issue