This commit is contained in:
Colombo 2019-11-21 11:40:55 +04:00
parent 668513a507
commit 6b14741160
5 changed files with 375 additions and 31 deletions

View file

@ -0,0 +1,198 @@
import multiprocessing
import traceback
import cv2
import numpy as np
from facelib import LandmarksProcessor
from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor,
SampleType)
from utils import iter_utils
'''
arg
output_sample_types = [
[SampleProcessor.TypeFlags, size, (optional) {} opts ] ,
...
]
'''
class SampleGeneratorFacePerson(SampleGeneratorBase):
def __init__ (self, samples_path, debug=False, batch_size=1,
sample_process_options=SampleProcessor.Options(),
output_sample_types=[],
person_id_mode=1,
generators_count=2,
generators_random_seed=None,
**kwargs):
super().__init__(samples_path, debug, batch_size)
self.sample_process_options = sample_process_options
self.output_sample_types = output_sample_types
self.person_id_mode = person_id_mode
if generators_random_seed is not None and len(generators_random_seed) != generators_count:
raise ValueError("len(generators_random_seed) != generators_count")
self.generators_random_seed = generators_random_seed
samples = SampleLoader.load (SampleType.FACE, self.samples_path, person_id_mode=True)
if person_id_mode==1:
new_samples = []
for s in samples:
new_samples += s
samples = new_samples
np.random.shuffle(samples)
self.samples_len = len(samples)
if self.samples_len == 0:
raise ValueError('No training data provided.')
if self.debug:
self.generators_count = 1
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (0, samples) )]
else:
self.generators_count = min ( generators_count, self.samples_len )
if person_id_mode==1:
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (i, samples[i::self.generators_count]) ) for i in range(self.generators_count) ]
else:
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (i, samples) ) for i in range(self.generators_count) ]
self.generator_counter = -1
#overridable
def get_total_sample_count(self):
return self.samples_len
def __iter__(self):
return self
def __next__(self):
self.generator_counter += 1
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
def batch_func(self, param ):
generator_id, samples = param
if self.generators_random_seed is not None:
np.random.seed ( self.generators_random_seed[generator_id] )
if self.person_id_mode==1:
samples_len = len(samples)
samples_idxs = [*range(samples_len)]
shuffle_idxs = []
elif self.person_id_mode==2:
persons_count = len(samples)
person_idxs = []
for j in range(persons_count):
for i in range(j+1,persons_count):
person_idxs += [ [i,j] ]
shuffle_person_idxs = []
samples_idxs = [None]*persons_count
shuffle_idxs = [None]*persons_count
for i in range(persons_count):
samples_idxs[i] = [*range(len(samples[i]))]
shuffle_idxs[i] = []
while True:
if self.person_id_mode==2:
if len(shuffle_person_idxs) == 0:
shuffle_person_idxs = person_idxs.copy()
np.random.shuffle(shuffle_person_idxs)
person_ids = shuffle_person_idxs.pop()
batches = None
for n_batch in range(self.batch_size):
if self.person_id_mode==1:
if len(shuffle_idxs) == 0:
shuffle_idxs = samples_idxs.copy()
np.random.shuffle(shuffle_idxs)
idx = shuffle_idxs.pop()
sample = samples[ idx ]
try:
x = SampleProcessor.process (sample, self.sample_process_options, self.output_sample_types, self.debug)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
if type(x) != tuple and type(x) != list:
raise Exception('SampleProcessor.process returns NOT tuple/list')
if batches is None:
batches = [ [] for _ in range(len(x)) ]
batches += [ [] ]
i_person_id = len(batches)-1
for i in range(len(x)):
batches[i].append ( x[i] )
batches[i_person_id].append ( np.array([sample.person_id]) )
else:
person_id1, person_id2 = person_ids
if len(shuffle_idxs[person_id1]) == 0:
shuffle_idxs[person_id1] = samples_idxs[person_id1].copy()
np.random.shuffle(shuffle_idxs[person_id1])
idx = shuffle_idxs[person_id1].pop()
sample1 = samples[person_id1][idx]
if len(shuffle_idxs[person_id2]) == 0:
shuffle_idxs[person_id2] = samples_idxs[person_id2].copy()
np.random.shuffle(shuffle_idxs[person_id2])
idx = shuffle_idxs[person_id2].pop()
sample2 = samples[person_id2][idx]
if sample1 is not None and sample2 is not None:
try:
x1 = SampleProcessor.process (sample1, self.sample_process_options, self.output_sample_types, self.debug)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample1.filename, traceback.format_exc() ) )
try:
x2 = SampleProcessor.process (sample2, self.sample_process_options, self.output_sample_types, self.debug)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample2.filename, traceback.format_exc() ) )
x1_len = len(x1)
if batches is None:
batches = [ [] for _ in range(x1_len) ]
batches += [ [] ]
i_person_id1 = len(batches)-1
batches += [ [] for _ in range(len(x2)) ]
batches += [ [] ]
i_person_id2 = len(batches)-1
for i in range(x1_len):
batches[i].append ( x1[i] )
for i in range(len(x2)):
batches[x1_len+1+i].append ( x2[i] )
batches[i_person_id1].append ( np.array([sample1.person_id]) )
batches[i_person_id2].append ( np.array([sample2.person_id]) )
yield [ np.array(batch) for batch in batches]
@staticmethod
def get_person_id_max_count(samples_path):
return SampleLoader.get_person_id_max_count(samples_path)