poisson noise

This commit is contained in:
Jeremy Hummel 2021-05-23 01:40:42 -07:00
commit 6856b5ad22

View file

@ -224,21 +224,21 @@ class SampleProcessor(object):
# Apply random noise
if random_noise:
noise_type = np.random.choice(['gaussian', 'laplace', 'poisson'])
noise_scale = (20 * np.random.random() + 20) / 255.0
noise_scale = (20 * np.random.random() + 20)
if noise_type == 'gaussian':
# noise = np.random.normal(scale=noise_scale, size=img.shape)
# img += noise
pass
elif noise_type == 'laplace':
noise = np.random.laplace(scale=noise_scale, size=img.shape)
img += noise
# pass
elif noise_type == 'poisson':
# noise_lam = (15 * np.random.random() + 15)
# noise = np.random.poisson(lam=noise_lam, size=img.shape)
# noise = np.random.laplace(scale=noise_scale, size=img.shape)
# img += noise
pass
elif noise_type == 'poisson':
noise_lam = (15 * np.random.random() + 15)
noise = np.random.poisson(lam=noise_lam, size=img.shape)
img += noise / 255.0
# pass
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate)
img = np.clip(img.astype(np.float32), 0, 1)