mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-10 15:23:32 -07:00
added option to converter --output-face-scale-modifier
This commit is contained in:
parent
2576a411a5
commit
64c3e57f1c
3 changed files with 29 additions and 19 deletions
|
@ -35,8 +35,8 @@ landmarks_68_pt = { "mouth": (48,68),
|
||||||
"left_eye": (42, 48),
|
"left_eye": (42, 48),
|
||||||
"nose": (27, 36), # missed one point
|
"nose": (27, 36), # missed one point
|
||||||
"jaw": (0, 17) }
|
"jaw": (0, 17) }
|
||||||
|
|
||||||
def get_transform_mat (image_landmarks, output_size, face_type):
|
def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0):
|
||||||
if not isinstance(image_landmarks, np.ndarray):
|
if not isinstance(image_landmarks, np.ndarray):
|
||||||
image_landmarks = np.array (image_landmarks)
|
image_landmarks = np.array (image_landmarks)
|
||||||
|
|
||||||
|
@ -63,13 +63,15 @@ def get_transform_mat (image_landmarks, output_size, face_type):
|
||||||
padding = (output_size / 64) * 24
|
padding = (output_size / 64) * 24
|
||||||
else:
|
else:
|
||||||
raise ValueError ('wrong face_type')
|
raise ValueError ('wrong face_type')
|
||||||
|
|
||||||
mat = umeyama(image_landmarks[17:], landmarks_2D, True)[0:2]
|
mat = umeyama(image_landmarks[17:], landmarks_2D, True)[0:2]
|
||||||
mat = mat * (output_size - 2 * padding)
|
mat = mat * (output_size - 2 * padding)
|
||||||
mat[:,2] += padding
|
mat[:,2] += padding
|
||||||
|
mat *= (1 / scale)
|
||||||
|
mat[:,2] += -output_size*( ( (1 / scale) - 1.0 ) / 2 )
|
||||||
|
|
||||||
return mat
|
return mat
|
||||||
|
|
||||||
def transform_points(points, mat, invert=False):
|
def transform_points(points, mat, invert=False):
|
||||||
if invert:
|
if invert:
|
||||||
mat = cv2.invertAffineTransform (mat)
|
mat = cv2.invertAffineTransform (mat)
|
||||||
|
|
8
main.py
8
main.py
|
@ -137,6 +137,11 @@ if __name__ == "__main__":
|
||||||
except:
|
except:
|
||||||
arguments.blur_mask_modifier = 0
|
arguments.blur_mask_modifier = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
arguments.output_face_scale_modifier = int ( input ("Choose output face scale modifier [-50..50] (default 0) : ") )
|
||||||
|
except:
|
||||||
|
arguments.output_face_scale_modifier = 0
|
||||||
|
|
||||||
try:
|
try:
|
||||||
arguments.alpha = bool ( {"1":True,"0":False}[input("Export png with alpha channel? [0..1] (default 0) : ").lower()] )
|
arguments.alpha = bool ( {"1":True,"0":False}[input("Export png with alpha channel? [0..1] (default 0) : ").lower()] )
|
||||||
except:
|
except:
|
||||||
|
@ -149,6 +154,7 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
arguments.erode_mask_modifier = np.clip ( int(arguments.erode_mask_modifier), -100, 100)
|
arguments.erode_mask_modifier = np.clip ( int(arguments.erode_mask_modifier), -100, 100)
|
||||||
arguments.blur_mask_modifier = np.clip ( int(arguments.blur_mask_modifier), -100, 200)
|
arguments.blur_mask_modifier = np.clip ( int(arguments.blur_mask_modifier), -100, 200)
|
||||||
|
arguments.output_face_scale_modifier = np.clip ( int(arguments.output_face_scale_modifier), -50, 50)
|
||||||
|
|
||||||
from mainscripts import Converter
|
from mainscripts import Converter
|
||||||
Converter.main (
|
Converter.main (
|
||||||
|
@ -162,6 +168,7 @@ if __name__ == "__main__":
|
||||||
masked_hist_match = arguments.masked_hist_match,
|
masked_hist_match = arguments.masked_hist_match,
|
||||||
erode_mask_modifier = arguments.erode_mask_modifier,
|
erode_mask_modifier = arguments.erode_mask_modifier,
|
||||||
blur_mask_modifier = arguments.blur_mask_modifier,
|
blur_mask_modifier = arguments.blur_mask_modifier,
|
||||||
|
output_face_scale_modifier = arguments.output_face_scale_modifier,
|
||||||
force_best_gpu_idx = arguments.force_best_gpu_idx,
|
force_best_gpu_idx = arguments.force_best_gpu_idx,
|
||||||
alpha = arguments.alpha,
|
alpha = arguments.alpha,
|
||||||
transfercolor = arguments.transfercolor,
|
transfercolor = arguments.transfercolor,
|
||||||
|
@ -178,6 +185,7 @@ if __name__ == "__main__":
|
||||||
convert_parser.add_argument('--masked-hist-match', type=str2bool, nargs='?', const=True, default=None, help="True or False. Excludes background for hist match. Default - model decide.")
|
convert_parser.add_argument('--masked-hist-match', type=str2bool, nargs='?', const=True, default=None, help="True or False. Excludes background for hist match. Default - model decide.")
|
||||||
convert_parser.add_argument('--erode-mask-modifier', type=int, dest="erode_mask_modifier", default=0, help="Automatic erode mask modifier. Valid range [-100..100].")
|
convert_parser.add_argument('--erode-mask-modifier', type=int, dest="erode_mask_modifier", default=0, help="Automatic erode mask modifier. Valid range [-100..100].")
|
||||||
convert_parser.add_argument('--blur-mask-modifier', type=int, dest="blur_mask_modifier", default=0, help="Automatic blur mask modifier. Valid range [-100..200].")
|
convert_parser.add_argument('--blur-mask-modifier', type=int, dest="blur_mask_modifier", default=0, help="Automatic blur mask modifier. Valid range [-100..200].")
|
||||||
|
convert_parser.add_argument('--output-face-scale-modifier', type=int, dest="output_face_scale_modifier", default=0, help="Output face scale modifier. Valid range [-50..50].")
|
||||||
convert_parser.add_argument('--debug', action="store_true", dest="debug", default=False, help="Debug converter.")
|
convert_parser.add_argument('--debug', action="store_true", dest="debug", default=False, help="Debug converter.")
|
||||||
convert_parser.add_argument('--alpha', action="store_true", dest="alpha", default=False, help="alpha channel.")
|
convert_parser.add_argument('--alpha', action="store_true", dest="alpha", default=False, help="alpha channel.")
|
||||||
convert_parser.add_argument('--transfercolor', action="store_true", dest="transfercolor", default=False, help="transfer color from dst to merged.")
|
convert_parser.add_argument('--transfercolor', action="store_true", dest="transfercolor", default=False, help="transfer color from dst to merged.")
|
||||||
|
|
|
@ -5,12 +5,7 @@ import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from utils import image_utils
|
from utils import image_utils
|
||||||
|
|
||||||
'''
|
|
||||||
predictor:
|
|
||||||
input: [predictor_input_size, predictor_input_size, BGRA]
|
|
||||||
output: [predictor_input_size, predictor_input_size, BGRA]
|
|
||||||
'''
|
|
||||||
|
|
||||||
class ConverterMasked(ConverterBase):
|
class ConverterMasked(ConverterBase):
|
||||||
|
|
||||||
#override
|
#override
|
||||||
|
@ -24,9 +19,10 @@ class ConverterMasked(ConverterBase):
|
||||||
masked_hist_match = False,
|
masked_hist_match = False,
|
||||||
mode='seamless',
|
mode='seamless',
|
||||||
erode_mask_modifier=0,
|
erode_mask_modifier=0,
|
||||||
blur_mask_modifier=0,
|
blur_mask_modifier=0,
|
||||||
|
output_face_scale_modifier=0.0,
|
||||||
alpha=False,
|
alpha=False,
|
||||||
transfercolor=False,
|
transfercolor=False,
|
||||||
**in_options):
|
**in_options):
|
||||||
|
|
||||||
super().__init__(predictor)
|
super().__init__(predictor)
|
||||||
|
@ -41,6 +37,7 @@ class ConverterMasked(ConverterBase):
|
||||||
self.mode = mode
|
self.mode = mode
|
||||||
self.erode_mask_modifier = erode_mask_modifier
|
self.erode_mask_modifier = erode_mask_modifier
|
||||||
self.blur_mask_modifier = blur_mask_modifier
|
self.blur_mask_modifier = blur_mask_modifier
|
||||||
|
self.output_face_scale = np.clip(1.0 + output_face_scale_modifier*0.01, 0.5, 1.0)
|
||||||
self.alpha = alpha
|
self.alpha = alpha
|
||||||
self.transfercolor = transfercolor
|
self.transfercolor = transfercolor
|
||||||
|
|
||||||
|
@ -68,6 +65,8 @@ class ConverterMasked(ConverterBase):
|
||||||
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr, img_face_landmarks)
|
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr, img_face_landmarks)
|
||||||
|
|
||||||
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type)
|
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type)
|
||||||
|
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type, scale=self.output_face_scale)
|
||||||
|
|
||||||
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
|
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
|
||||||
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
|
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
|
||||||
|
|
||||||
|
@ -84,7 +83,7 @@ class ConverterMasked(ConverterBase):
|
||||||
prd_face_mask_a = np.expand_dims (prd_face_mask_a_0, axis=-1)
|
prd_face_mask_a = np.expand_dims (prd_face_mask_a_0, axis=-1)
|
||||||
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
|
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
|
||||||
|
|
||||||
img_prd_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_mat, img_size, np.zeros(img_bgr.shape, dtype=float), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
|
img_prd_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=float), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
|
||||||
img_prd_face_mask_aaa = np.clip (img_prd_face_mask_aaa, 0.0, 1.0)
|
img_prd_face_mask_aaa = np.clip (img_prd_face_mask_aaa, 0.0, 1.0)
|
||||||
|
|
||||||
img_face_mask_aaa = img_prd_face_mask_aaa
|
img_face_mask_aaa = img_prd_face_mask_aaa
|
||||||
|
@ -146,7 +145,7 @@ class ConverterMasked(ConverterBase):
|
||||||
|
|
||||||
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
||||||
if debug:
|
if debug:
|
||||||
debugs += [ cv2.warpAffine( prd_face_bgr, face_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ) ]
|
debugs += [ cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ) ]
|
||||||
|
|
||||||
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=prd_face_bgr.dtype)
|
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=prd_face_bgr.dtype)
|
||||||
|
|
||||||
|
@ -159,8 +158,9 @@ class ConverterMasked(ConverterBase):
|
||||||
|
|
||||||
if self.mode == 'hist-match-bw':
|
if self.mode == 'hist-match-bw':
|
||||||
prd_face_bgr = prd_face_bgr.astype(np.float32)
|
prd_face_bgr = prd_face_bgr.astype(np.float32)
|
||||||
|
|
||||||
|
|
||||||
out_img = cv2.warpAffine( prd_face_bgr, face_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||||
|
|
||||||
if debug:
|
if debug:
|
||||||
debugs += [out_img.copy()]
|
debugs += [out_img.copy()]
|
||||||
|
@ -177,7 +177,7 @@ class ConverterMasked(ConverterBase):
|
||||||
debugs += [out_img.copy()]
|
debugs += [out_img.copy()]
|
||||||
|
|
||||||
if self.clip_border_mask_per > 0:
|
if self.clip_border_mask_per > 0:
|
||||||
img_prd_border_rect_mask_a = cv2.warpAffine( prd_border_rect_mask_a, face_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
img_prd_border_rect_mask_a = cv2.warpAffine( prd_border_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||||
img_prd_border_rect_mask_a = np.expand_dims (img_prd_border_rect_mask_a, -1)
|
img_prd_border_rect_mask_a = np.expand_dims (img_prd_border_rect_mask_a, -1)
|
||||||
|
|
||||||
out_img = out_img * img_prd_border_rect_mask_a + img_bgr * (1.0 - img_prd_border_rect_mask_a)
|
out_img = out_img * img_prd_border_rect_mask_a + img_bgr * (1.0 - img_prd_border_rect_mask_a)
|
||||||
|
@ -186,7 +186,7 @@ class ConverterMasked(ConverterBase):
|
||||||
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (out_img*img_mask_blurry_aaa) , 0, 1.0 )
|
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (out_img*img_mask_blurry_aaa) , 0, 1.0 )
|
||||||
|
|
||||||
if self.mode == 'seamless-hist-match':
|
if self.mode == 'seamless-hist-match':
|
||||||
out_face_bgr = cv2.warpAffine( out_img, face_mat, (self.output_size, self.output_size) )
|
out_face_bgr = cv2.warpAffine( out_img, face_mat, (self.output_size, self.output_size) )
|
||||||
new_out_face_bgr = image_utils.color_hist_match(out_face_bgr, dst_face_bgr )
|
new_out_face_bgr = image_utils.color_hist_match(out_face_bgr, dst_face_bgr )
|
||||||
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||||
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (new_out*img_mask_blurry_aaa) , 0, 1.0 )
|
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (new_out*img_mask_blurry_aaa) , 0, 1.0 )
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue