mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-14 02:37:00 -07:00
added option to converter --output-face-scale-modifier
This commit is contained in:
parent
2576a411a5
commit
64c3e57f1c
3 changed files with 29 additions and 19 deletions
|
@ -5,12 +5,7 @@ import cv2
|
|||
import numpy as np
|
||||
from utils import image_utils
|
||||
|
||||
'''
|
||||
predictor:
|
||||
input: [predictor_input_size, predictor_input_size, BGRA]
|
||||
output: [predictor_input_size, predictor_input_size, BGRA]
|
||||
'''
|
||||
|
||||
|
||||
class ConverterMasked(ConverterBase):
|
||||
|
||||
#override
|
||||
|
@ -24,9 +19,10 @@ class ConverterMasked(ConverterBase):
|
|||
masked_hist_match = False,
|
||||
mode='seamless',
|
||||
erode_mask_modifier=0,
|
||||
blur_mask_modifier=0,
|
||||
blur_mask_modifier=0,
|
||||
output_face_scale_modifier=0.0,
|
||||
alpha=False,
|
||||
transfercolor=False,
|
||||
transfercolor=False,
|
||||
**in_options):
|
||||
|
||||
super().__init__(predictor)
|
||||
|
@ -41,6 +37,7 @@ class ConverterMasked(ConverterBase):
|
|||
self.mode = mode
|
||||
self.erode_mask_modifier = erode_mask_modifier
|
||||
self.blur_mask_modifier = blur_mask_modifier
|
||||
self.output_face_scale = np.clip(1.0 + output_face_scale_modifier*0.01, 0.5, 1.0)
|
||||
self.alpha = alpha
|
||||
self.transfercolor = transfercolor
|
||||
|
||||
|
@ -68,6 +65,8 @@ class ConverterMasked(ConverterBase):
|
|||
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr, img_face_landmarks)
|
||||
|
||||
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type)
|
||||
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type, scale=self.output_face_scale)
|
||||
|
||||
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
|
||||
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
|
||||
|
||||
|
@ -84,7 +83,7 @@ class ConverterMasked(ConverterBase):
|
|||
prd_face_mask_a = np.expand_dims (prd_face_mask_a_0, axis=-1)
|
||||
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
|
||||
|
||||
img_prd_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_mat, img_size, np.zeros(img_bgr.shape, dtype=float), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
|
||||
img_prd_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=float), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
|
||||
img_prd_face_mask_aaa = np.clip (img_prd_face_mask_aaa, 0.0, 1.0)
|
||||
|
||||
img_face_mask_aaa = img_prd_face_mask_aaa
|
||||
|
@ -146,7 +145,7 @@ class ConverterMasked(ConverterBase):
|
|||
|
||||
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
||||
if debug:
|
||||
debugs += [ cv2.warpAffine( prd_face_bgr, face_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ) ]
|
||||
debugs += [ cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ) ]
|
||||
|
||||
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=prd_face_bgr.dtype)
|
||||
|
||||
|
@ -159,8 +158,9 @@ class ConverterMasked(ConverterBase):
|
|||
|
||||
if self.mode == 'hist-match-bw':
|
||||
prd_face_bgr = prd_face_bgr.astype(np.float32)
|
||||
|
||||
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
|
||||
if debug:
|
||||
debugs += [out_img.copy()]
|
||||
|
@ -177,7 +177,7 @@ class ConverterMasked(ConverterBase):
|
|||
debugs += [out_img.copy()]
|
||||
|
||||
if self.clip_border_mask_per > 0:
|
||||
img_prd_border_rect_mask_a = cv2.warpAffine( prd_border_rect_mask_a, face_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
img_prd_border_rect_mask_a = cv2.warpAffine( prd_border_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
img_prd_border_rect_mask_a = np.expand_dims (img_prd_border_rect_mask_a, -1)
|
||||
|
||||
out_img = out_img * img_prd_border_rect_mask_a + img_bgr * (1.0 - img_prd_border_rect_mask_a)
|
||||
|
@ -186,7 +186,7 @@ class ConverterMasked(ConverterBase):
|
|||
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (out_img*img_mask_blurry_aaa) , 0, 1.0 )
|
||||
|
||||
if self.mode == 'seamless-hist-match':
|
||||
out_face_bgr = cv2.warpAffine( out_img, face_mat, (self.output_size, self.output_size) )
|
||||
out_face_bgr = cv2.warpAffine( out_img, face_mat, (self.output_size, self.output_size) )
|
||||
new_out_face_bgr = image_utils.color_hist_match(out_face_bgr, dst_face_bgr )
|
||||
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (new_out*img_mask_blurry_aaa) , 0, 1.0 )
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue