fixes and optimizations,

converters: added new option sharpen_mode and sharpen_amount
This commit is contained in:
iperov 2019-08-25 19:18:51 +04:00
parent c39ed9d9c9
commit 63d30c49ae
12 changed files with 120 additions and 78 deletions

View file

@ -29,6 +29,9 @@ def ConvertFaceAvatar (cfg, prev_temporal_frame_infos, frame_info, next_temporal
if cfg.super_resolution_mode != 0: if cfg.super_resolution_mode != 0:
prd_f = cfg.superres_func(cfg.super_resolution_mode, prd_f) prd_f = cfg.superres_func(cfg.super_resolution_mode, prd_f)
if cfg.sharpen_mode != 0 and cfg.sharpen_amount != 0:
prd_f = cfg.sharpen_func ( prd_f, cfg.sharpen_mode, 0.003, cfg.sharpen_amount)
out_img = np.clip(prd_f, 0.0, 1.0) out_img = np.clip(prd_f, 0.0, 1.0)
if cfg.add_source_image: if cfg.add_source_image:

View file

@ -293,42 +293,34 @@ def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmar
out_img = img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa) out_img = img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa)
if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0: out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
if cfg.color_transfer_mode == 1: if cfg.color_transfer_mode == 1:
#if debug: #if debug:
# debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ] # debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
face_mask_aaa = cv2.warpAffine( img_face_mask_aaa, face_mat, (output_size, output_size) ) face_mask_aaa = cv2.warpAffine( img_face_mask_aaa, face_mat, (output_size, output_size) )
new_out_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (out_face_bgr*255).astype(np.uint8), 0, 255), out_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (out_face_bgr*255).astype(np.uint8), 0, 255),
np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255), np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255),
source_mask=face_mask_aaa, target_mask=face_mask_aaa) source_mask=face_mask_aaa, target_mask=face_mask_aaa)
new_out_face_bgr = np.clip( new_out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0) out_face_bgr = np.clip( out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
#if debug: #if debug:
# debugs += [ np.clip( cv2.warpAffine( new_out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ] # debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
elif cfg.color_transfer_mode == 2: elif cfg.color_transfer_mode == 2:
#if debug: #if debug:
# debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ] # debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
new_out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr) out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr)
new_out_face_bgr = np.clip( new_out_face_bgr, 0.0, 1.0) out_face_bgr = np.clip( out_face_bgr, 0.0, 1.0)
#if debug: #if debug:
# debugs += [ np.clip( cv2.warpAffine( new_out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ] # debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
if cfg.mode == 'seamless-hist-match': if cfg.mode == 'seamless-hist-match':
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) ) out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)
new_out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
cfg_mp = cfg.motion_blur_power / 100.0 cfg_mp = cfg.motion_blur_power / 100.0
if cfg_mp != 0: if cfg_mp != 0:
@ -337,10 +329,14 @@ def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmar
k_size = np.clip (k_size+1, 2, 50) k_size = np.clip (k_size+1, 2, 50)
if cfg.super_resolution_mode: if cfg.super_resolution_mode:
k_size *= 2 k_size *= 2
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) ) out_face_bgr = imagelib.LinearMotionBlur (out_face_bgr, k_size , frame_info.motion_deg)
new_out_face_bgr = imagelib.LinearMotionBlur (out_face_bgr, k_size , frame_info.motion_deg)
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ) if cfg.sharpen_mode != 0 and cfg.sharpen_amount != 0:
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 ) out_face_bgr = cfg.sharpen_func ( out_face_bgr, cfg.sharpen_mode, 0.003, cfg.sharpen_amount)
new_out = cv2.warpAffine( out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
if cfg.color_degrade_power != 0: if cfg.color_degrade_power != 0:
#if debug: #if debug:

View file

@ -20,29 +20,69 @@ class ConverterConfig(object):
self.predictor_func = predictor_func self.predictor_func = predictor_func
self.predictor_input_shape = predictor_input_shape self.predictor_input_shape = predictor_input_shape
self.dcscn_upscale_func = None self.superres_func = None
self.sharpen_func = None
self.fanseg_input_size = None self.fanseg_input_size = None
self.fanseg_extract_func = None self.fanseg_extract_func = None
self.super_res_dict = {0:"None", 1:'RankSRGAN'}
self.sharpen_dict = {0:"None", 1:'box', 2:'gaussian'}
#default changeable params
self.super_resolution_mode = 0
self.sharpen_mode = 0
self.sharpen_amount = 0
def copy(self): def copy(self):
return copy.copy(self) return copy.copy(self)
#overridable #overridable
def ask_settings(self): def ask_settings(self):
pass s = """Choose sharpen mode: \n"""
for key in self.sharpen_dict.keys():
s += f"""({key}) {self.sharpen_dict[key]}\n"""
s += f"""?:help Default: {list(self.sharpen_dict.keys())[0]} : """
self.sharpen_mode = io.input_int (s, 0, valid_list=self.sharpen_dict.keys(), help_message="Enhance details by applying sharpen filter.")
if self.sharpen_mode != 0:
self.sharpen_amount = np.clip ( io.input_int ("Choose sharpen amount [0..100] (skip:%d) : " % 10, 10), 0, 100 )
s = """Choose super resolution mode: \n"""
for key in self.super_res_dict.keys():
s += f"""({key}) {self.super_res_dict[key]}\n"""
s += f"""?:help Default: {list(self.super_res_dict.keys())[0]} : """
self.super_resolution_mode = io.input_int (s, 0, valid_list=self.super_res_dict.keys(), help_message="Enhance details by applying superresolution network.")
def toggle_sharpen_mode(self):
a = list( self.sharpen_dict.keys() )
self.sharpen_mode = a[ (a.index(self.sharpen_mode)+1) % len(a) ]
def add_sharpen_amount(self, diff):
self.sharpen_amount = np.clip ( self.sharpen_amount+diff, 0, 100)
def toggle_super_resolution_mode(self):
a = list( self.super_res_dict.keys() )
self.super_resolution_mode = a[ (a.index(self.super_resolution_mode)+1) % len(a) ]
#overridable #overridable
def __eq__(self, other): def __eq__(self, other):
#check equality of changeable params #check equality of changeable params
if isinstance(other, ConverterConfig): if isinstance(other, ConverterConfig):
return True return self.sharpen_mode == other.sharpen_mode and \
(self.sharpen_mode == 0 or ((self.sharpen_mode == other.sharpen_mode) and (self.sharpen_amount == other.sharpen_amount) )) and \
self.super_resolution_mode == other.super_resolution_mode
return False return False
#overridable #overridable
def __str__(self): def __str__(self):
return "ConverterConfig: ." r = ""
r += f"sharpen_mode : {self.sharpen_dict[self.sharpen_mode]}\n"
if self.sharpen_mode != 0:
r += f"sharpen_amount : {self.sharpen_amount}\n"
r += f"super_resolution_mode : {self.super_res_dict[self.super_resolution_mode]}\n"
return r
class ConverterConfigMasked(ConverterConfig): class ConverterConfigMasked(ConverterConfig):
@ -81,8 +121,6 @@ class ConverterConfigMasked(ConverterConfig):
self.clip_hborder_mask_per = clip_hborder_mask_per self.clip_hborder_mask_per = clip_hborder_mask_per
#default changeable params #default changeable params
self.mode = 'overlay' self.mode = 'overlay'
self.masked_hist_match = True self.masked_hist_match = True
self.hist_match_threshold = 238 self.hist_match_threshold = 238
@ -92,7 +130,6 @@ class ConverterConfigMasked(ConverterConfig):
self.motion_blur_power = 0 self.motion_blur_power = 0
self.output_face_scale = 0 self.output_face_scale = 0
self.color_transfer_mode = 0 self.color_transfer_mode = 0
self.super_resolution_mode = 0
self.color_degrade_power = 0 self.color_degrade_power = 0
self.export_mask_alpha = False self.export_mask_alpha = False
@ -122,8 +159,6 @@ class ConverterConfigMasked(ConverterConfig):
self.ctm_dict = { 0: "None", 1:"rct", 2:"lct" } self.ctm_dict = { 0: "None", 1:"rct", 2:"lct" }
self.ctm_str_dict = {None:0, "rct":1, "lct": 2 } self.ctm_str_dict = {None:0, "rct":1, "lct": 2 }
self.super_res_dict = {0:"None", 1:'RankSRGAN'}
def copy(self): def copy(self):
return copy.copy(self) return copy.copy(self)
@ -160,10 +195,6 @@ class ConverterConfigMasked(ConverterConfig):
def toggle_color_transfer_mode(self): def toggle_color_transfer_mode(self):
self.color_transfer_mode = (self.color_transfer_mode+1) % 3 self.color_transfer_mode = (self.color_transfer_mode+1) % 3
def toggle_super_resolution_mode(self):
a = list( self.super_res_dict.keys() )
self.super_resolution_mode = a[ (a.index(self.super_resolution_mode)+1) % len(a) ]
def add_color_degrade_power(self, diff): def add_color_degrade_power(self, diff):
self.color_degrade_power = np.clip ( self.color_degrade_power+diff , 0, 100) self.color_degrade_power = np.clip ( self.color_degrade_power+diff , 0, 100)
@ -213,12 +244,7 @@ class ConverterConfigMasked(ConverterConfig):
self.color_transfer_mode = io.input_str ("Apply color transfer to predicted face? Choose mode ( rct/lct skip:None ) : ", None, ['rct','lct']) self.color_transfer_mode = io.input_str ("Apply color transfer to predicted face? Choose mode ( rct/lct skip:None ) : ", None, ['rct','lct'])
self.color_transfer_mode = self.ctm_str_dict[self.color_transfer_mode] self.color_transfer_mode = self.ctm_str_dict[self.color_transfer_mode]
s = """Choose super resolution mode: \n""" super().ask_settings()
for key in self.super_res_dict.keys():
s += f"""({key}) {self.super_res_dict[key]}\n"""
s += f"""?:help Default: {list(self.super_res_dict.keys())[0]} : """
self.super_resolution_mode = io.input_int (s, 0, valid_list=self.super_res_dict.keys(), help_message="Enhance details by applying superresolution network.")
if 'raw' not in self.mode: if 'raw' not in self.mode:
self.color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100) self.color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
@ -230,7 +256,8 @@ class ConverterConfigMasked(ConverterConfig):
#check equality of changeable params #check equality of changeable params
if isinstance(other, ConverterConfigMasked): if isinstance(other, ConverterConfigMasked):
return self.mode == other.mode and \ return super().__eq__(other) and \
self.mode == other.mode and \
self.masked_hist_match == other.masked_hist_match and \ self.masked_hist_match == other.masked_hist_match and \
self.hist_match_threshold == other.hist_match_threshold and \ self.hist_match_threshold == other.hist_match_threshold and \
self.mask_mode == other.mask_mode and \ self.mask_mode == other.mask_mode and \
@ -239,7 +266,6 @@ class ConverterConfigMasked(ConverterConfig):
self.motion_blur_power == other.motion_blur_power and \ self.motion_blur_power == other.motion_blur_power and \
self.output_face_scale == other.output_face_scale and \ self.output_face_scale == other.output_face_scale and \
self.color_transfer_mode == other.color_transfer_mode and \ self.color_transfer_mode == other.color_transfer_mode and \
self.super_resolution_mode == other.super_resolution_mode and \
self.color_degrade_power == other.color_degrade_power and \ self.color_degrade_power == other.color_degrade_power and \
self.export_mask_alpha == other.export_mask_alpha self.export_mask_alpha == other.export_mask_alpha
@ -272,7 +298,7 @@ class ConverterConfigMasked(ConverterConfig):
if 'raw' not in self.mode: if 'raw' not in self.mode:
r += f"""color_transfer_mode: { self.ctm_dict[self.color_transfer_mode]}\n""" r += f"""color_transfer_mode: { self.ctm_dict[self.color_transfer_mode]}\n"""
r += f"""super_resolution_mode: {self.super_res_dict[self.super_resolution_mode]}\n""" r += super().__str__()
if 'raw' not in self.mode: if 'raw' not in self.mode:
r += (f"""color_degrade_power: {self.color_degrade_power}\n""" r += (f"""color_degrade_power: {self.color_degrade_power}\n"""
@ -297,8 +323,6 @@ class ConverterConfigFaceAvatar(ConverterConfig):
#changeable params #changeable params
self.add_source_image = False self.add_source_image = False
self.super_resolution_mode = 0
self.super_res_dict = {0:"None", 1:'RankSRGAN'}
def copy(self): def copy(self):
return copy.copy(self) return copy.copy(self)
@ -306,33 +330,24 @@ class ConverterConfigFaceAvatar(ConverterConfig):
#override #override
def ask_settings(self): def ask_settings(self):
self.add_source_image = io.input_bool("Add source image? (y/n ?:help skip:n) : ", False, help_message="Add source image for comparison.") self.add_source_image = io.input_bool("Add source image? (y/n ?:help skip:n) : ", False, help_message="Add source image for comparison.")
super().ask_settings()
s = """Choose super resolution mode: \n"""
for key in self.super_res_dict.keys():
s += f"""({key}) {self.super_res_dict[key]}\n"""
s += f"""?:help Default: {list(self.super_res_dict.keys())[0]} : """
self.super_resolution_mode = io.input_int (s, 0, valid_list=self.super_res_dict.keys(), help_message="Enhance details by applying superresolution network.")
def toggle_add_source_image(self): def toggle_add_source_image(self):
self.add_source_image = not self.add_source_image self.add_source_image = not self.add_source_image
def toggle_super_resolution_mode(self):
a = list( self.super_res_dict.keys() )
self.super_resolution_mode = a[ (a.index(self.super_resolution_mode)+1) % len(a) ]
#override #override
def __eq__(self, other): def __eq__(self, other):
#check equality of changeable params #check equality of changeable params
if isinstance(other, ConverterConfigFaceAvatar): if isinstance(other, ConverterConfigFaceAvatar):
return self.add_source_image == other.add_source_image and \ return super().__eq__(other) and \
self.super_resolution_mode == other.super_resolution_mode self.add_source_image == other.add_source_image
return False return False
#override #override
def __str__(self): def __str__(self):
return ("ConverterConfig: \n" return ("ConverterConfig: \n"
f"add_source_image : {self.add_source_image}\n" f"add_source_image : {self.add_source_image}\n") + \
f"super_resolution_mode : {self.super_res_dict[self.super_resolution_mode]}\n" super().__str__() + "================"
"================"
)

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View file

@ -84,6 +84,23 @@ class ConvertSubprocessor(Subprocessor):
#therefore forcing active_DeviceConfig to CPU only #therefore forcing active_DeviceConfig to CPU only
nnlib.active_DeviceConfig = nnlib.DeviceConfig (cpu_only=True) nnlib.active_DeviceConfig = nnlib.DeviceConfig (cpu_only=True)
def sharpen_func (img, sharpen_mode=0, radius=0.003, amount=150):
h,w,c = img.shape
radius = max(1, round(w * radius))
kernel_size = int((radius * 2) + 1)
if sharpen_mode == 1: #box
kernel = np.zeros( (kernel_size, kernel_size), dtype=np.float32)
kernel[ kernel_size//2, kernel_size//2] = 1.0
box_filter = np.ones( (kernel_size, kernel_size), dtype=np.float32) / (kernel_size**2)
kernel = kernel + (kernel - box_filter) * amount
return cv2.filter2D(img, -1, kernel)
elif sharpen_mode == 2: #gaussian
blur = cv2.GaussianBlur(img, (kernel_size, kernel_size) , 0)
img = cv2.addWeighted(img, 1.0 + (0.5 * amount), blur, -(0.5 * amount), 0)
return img
return img
self.sharpen_func = sharpen_func
self.fanseg_by_face_type = {} self.fanseg_by_face_type = {}
self.fanseg_input_size = 256 self.fanseg_input_size = 256
@ -103,6 +120,7 @@ class ConvertSubprocessor(Subprocessor):
def process_data(self, pf): #pf=ProcessingFrame def process_data(self, pf): #pf=ProcessingFrame
cfg = pf.cfg.copy() cfg = pf.cfg.copy()
cfg.predictor_func = self.predictor_func cfg.predictor_func = self.predictor_func
cfg.sharpen_func = self.sharpen_func
cfg.superres_func = self.superres_func cfg.superres_func = self.superres_func
frame_info = pf.frame_info frame_info = pf.frame_info
@ -239,8 +257,8 @@ class ConvertSubprocessor(Subprocessor):
io.progress_bar_close() io.progress_bar_close()
cfg_change_keys = ['`','1', '2', '3', '4', '5', '6', '7', '8', '9', cfg_change_keys = ['`','1', '2', '3', '4', '5', '6', '7', '8', '9',
'q', 'a', 'w', 's', 'e', 'd', 'r', 'f', 't', 'g','y','h', 'q', 'a', 'w', 's', 'e', 'd', 'r', 'f', 't', 'g','y','h','u','j',
'z', 'x', 'c', 'v', 'b' ] 'z', 'x', 'c', 'v', 'b','n' ]
#override #override
def on_tick(self): def on_tick(self):
self.predictor_func_host.process_messages() self.predictor_func_host.process_messages()
@ -324,8 +342,12 @@ class ConvertSubprocessor(Subprocessor):
elif chr_key == 'g': elif chr_key == 'g':
cfg.add_color_degrade_power(-1 if not shift_pressed else -5) cfg.add_color_degrade_power(-1 if not shift_pressed else -5)
elif chr_key == 'y': elif chr_key == 'y':
cfg.add_output_face_scale(1 if not shift_pressed else 5) cfg.add_sharpen_amount(1 if not shift_pressed else 5)
elif chr_key == 'h': elif chr_key == 'h':
cfg.add_sharpen_amount(-1 if not shift_pressed else -5)
elif chr_key == 'u':
cfg.add_output_face_scale(1 if not shift_pressed else 5)
elif chr_key == 'j':
cfg.add_output_face_scale(-1 if not shift_pressed else -5) cfg.add_output_face_scale(-1 if not shift_pressed else -5)
elif chr_key == 'z': elif chr_key == 'z':
@ -338,11 +360,20 @@ class ConvertSubprocessor(Subprocessor):
cfg.toggle_super_resolution_mode() cfg.toggle_super_resolution_mode()
elif chr_key == 'b': elif chr_key == 'b':
cfg.toggle_export_mask_alpha() cfg.toggle_export_mask_alpha()
elif chr_key == 'n':
cfg.toggle_sharpen_mode()
else: else:
if chr_key == 's': if chr_key == 'y':
cfg.add_sharpen_amount(1 if not shift_pressed else 5)
elif chr_key == 'h':
cfg.add_sharpen_amount(-1 if not shift_pressed else -5)
elif chr_key == 's':
cfg.toggle_add_source_image() cfg.toggle_add_source_image()
elif chr_key == 'v': elif chr_key == 'v':
cfg.toggle_super_resolution_mode() cfg.toggle_super_resolution_mode()
elif chr_key == 'n':
cfg.toggle_sharpen_mode()
if prev_cfg != cfg: if prev_cfg != cfg:
io.log_info (cfg) io.log_info (cfg)
@ -368,16 +399,13 @@ class ConvertSubprocessor(Subprocessor):
if go_prev_frame: if go_prev_frame:
if cur_frame is not None and cur_frame.is_done: if cur_frame is not None and cur_frame.is_done:
cur_frame.image = None cur_frame.image = None
if len(self.frames_done_idxs) > 0:
prev_frame = self.frames[self.frames_done_idxs.pop()]
self.frames_idxs.insert(0, prev_frame.idx)
prev_frame.is_shown = False
io.progress_bar_inc(-1)
if go_prev_frame_overriding_cfg:
if len(self.frames_done_idxs) > 0:
prev_frame = self.frames[self.frames_done_idxs.pop()]
self.frames_idxs.insert(0, prev_frame.idx)
prev_frame.is_shown = False
io.progress_bar_inc(-1)
if go_prev_frame_overriding_cfg:
if cur_frame is not None:
if prev_frame.cfg != cur_frame.cfg: if prev_frame.cfg != cur_frame.cfg:
prev_frame.cfg = cur_frame.cfg prev_frame.cfg = cur_frame.cfg
prev_frame.is_done = False prev_frame.is_done = False

Binary file not shown.

Before

Width:  |  Height:  |  Size: 135 KiB

After

Width:  |  Height:  |  Size: 159 KiB

Before After
Before After

Binary file not shown.

Before

Width:  |  Height:  |  Size: 270 KiB

After

Width:  |  Height:  |  Size: 288 KiB

Before After
Before After