diff --git a/models/Model_SAE/Model.py b/models/Model_SAE/Model.py index 2f5f5b4..33915c5 100644 --- a/models/Model_SAE/Model.py +++ b/models/Model_SAE/Model.py @@ -127,7 +127,7 @@ class SAEModel(ModelBase): padding = 'reflect' if self.options['remove_gray_border'] else 'zero' common_flow_kwargs = { 'padding': padding, - 'norm': 'bn', + 'norm': '', 'act':'' } weights_to_load = [] @@ -486,9 +486,9 @@ class SAEModel(ModelBase): return x SAEModel.ResidualBlock = ResidualBlock - def downscale (dim, padding='zero', norm='', act='', kernel_regularizer=None, **kwargs): + def downscale (dim, padding='zero', norm='', act='', **kwargs): def func(x): - return Norm(norm)( Act(act) (Conv2D(dim, kernel_size=5, strides=2, padding=padding, kernel_regularizer=kernel_regularizer)(x)) ) + return Norm(norm)( Act(act) (Conv2D(dim, kernel_size=5, strides=2, padding=padding)(x)) ) return func SAEModel.downscale = downscale @@ -508,7 +508,7 @@ class SAEModel(ModelBase): def LIAEEncFlow(resolution, ch_dims, **kwargs): exec (nnlib.import_all(), locals(), globals()) upscale = partial(SAEModel.upscale, **kwargs) - downscale = partial(SAEModel.downscale, kernel_regularizer=keras.regularizers.l2(0.0), **kwargs) + downscale = partial(SAEModel.downscale, **kwargs) def func(input): dims = K.int_shape(input)[-1]*ch_dims @@ -531,12 +531,8 @@ class SAEModel(ModelBase): def func(input): x = input[0] - - #https://arxiv.org/abs/1807.01442 https://github.com/aditya-grover/uae - x = Dense(ae_dims, use_bias=False)(x) - x = Lambda ( lambda x: x + 0.1*K.random_normal(K.shape(x), 0, 1) , output_shape=(None,ae_dims) ) (x) - x = Dense(lowest_dense_res * lowest_dense_res * ae_dims*2, use_bias=False)(x) - + x = Dense(ae_dims)(x) + x = Dense(lowest_dense_res * lowest_dense_res * ae_dims*2)(x) x = Reshape((lowest_dense_res, lowest_dense_res, ae_dims*2))(x) x = upscale(ae_dims*2)(x) return x @@ -587,7 +583,7 @@ class SAEModel(ModelBase): def DFEncFlow(resolution, ae_dims, ch_dims, **kwargs): exec (nnlib.import_all(), locals(), globals()) upscale = partial(SAEModel.upscale, **kwargs) - downscale = partial(SAEModel.downscale, kernel_regularizer=keras.regularizers.l2(0.0), **kwargs) + downscale = partial(SAEModel.downscale, **kwargs)#, kernel_regularizer=keras.regularizers.l2(0.0), lowest_dense_res = resolution // 16 def func(input): @@ -598,12 +594,9 @@ class SAEModel(ModelBase): x = downscale(dims*2)(x) x = downscale(dims*4)(x) x = downscale(dims*8)(x) - - #https://arxiv.org/abs/1807.01442 https://github.com/aditya-grover/uae - x = Dense(ae_dims, use_bias=False)(Flatten()(x)) - x = Lambda ( lambda x: x + 0.1*K.random_normal(K.shape(x), 0, 1) , output_shape=(None,ae_dims) ) (x) - x = Dense(lowest_dense_res * lowest_dense_res * ae_dims, use_bias=False)(x) - + + x = Dense(ae_dims)(Flatten()(x)) + x = Dense(lowest_dense_res * lowest_dense_res * ae_dims)(x) x = Reshape((lowest_dense_res, lowest_dense_res, ae_dims))(x) x = upscale(ae_dims)(x) return x