fix fanseg

This commit is contained in:
iperov 2019-03-20 09:08:42 +04:00
parent a3df04999c
commit 6169e6ba8a
2 changed files with 59 additions and 56 deletions

View file

@ -6,44 +6,46 @@ from nnlib import nnlib
from interact import interact as io
class FANSegmentator(object):
def __init__ (self, resolution, face_type_str, load_weights=True, weights_file_root=None):
def __init__ (self, resolution, face_type_str, load_weights=True, weights_file_root=None, training=False):
exec( nnlib.import_all(), locals(), globals() )
self.model = FANSegmentator.BuildModel(resolution, ngf=32)
if weights_file_root:
weights_file_root = Path(weights_file_root)
else:
weights_file_root = Path(__file__).parent
self.weights_path = weights_file_root / ('FANSeg_%d_%s.h5' % (resolution, face_type_str) )
if load_weights:
self.model.load_weights (str(self.weights_path))
else:
io.log_info ("Initializing CA weights...")
conv_weights_list = []
for layer in self.model.layers:
if type(layer) == Conv2D:
conv_weights_list += [layer.weights[0]] # Conv2D kernel_weights
CAInitializerMP(conv_weights_list)
if training:
io.log_info ("Initializing CA weights...")
conv_weights_list = []
for layer in self.model.layers:
if type(layer) == Conv2D:
conv_weights_list += [layer.weights[0]] # Conv2D kernel_weights
CAInitializerMP(conv_weights_list)
if training:
self.model.compile(loss='mse', optimizer=Adam(tf_cpu_mode=2))
def __enter__(self):
return self
def __exit__(self, exc_type=None, exc_value=None, traceback=None):
return False #pass exception between __enter__ and __exit__ to outter level
def save_weights(self):
self.model.save_weights (str(self.weights_path))
def train_on_batch(self, inp, outp):
return self.model.train_on_batch(inp, outp)
def extract_from_bgr (self, input_image):
return np.clip ( (self.model.predict(input_image) + 1) / 2.0, 0, 1.0 )
@staticmethod
def BuildModel ( resolution, ngf=64):
exec( nnlib.import_all(), locals(), globals() )
@ -53,7 +55,7 @@ class FANSegmentator(object):
x = FANSegmentator.DecFlow(ngf=ngf)(x)
model = Model(inp,x)
return model
@staticmethod
def EncFlow(ngf=64, num_downs=4):
exec( nnlib.import_all(), locals(), globals() )
@ -65,19 +67,19 @@ class FANSegmentator(object):
def downscale (dim):
def func(x):
return LeakyReLU(0.1)(XNormalization(Conv2D(dim, kernel_size=5, strides=2, padding='same', kernel_initializer=RandomNormal(0, 0.02))(x)))
return func
def func(input):
return func
def func(input):
x = input
result = []
for i in range(num_downs):
x = downscale ( min(ngf*(2**i), ngf*8) )(x)
result += [x]
result += [x]
return result
return func
@staticmethod
def DecFlow(output_nc=1, ngf=64, activation='tanh'):
exec (nnlib.import_all(), locals(), globals())
@ -85,23 +87,23 @@ class FANSegmentator(object):
use_bias = True
def XNormalization(x):
return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)
def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=use_bias, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
return keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint )
def upscale (dim):
def func(x):
return SubpixelUpscaler()( LeakyReLU(0.1)(XNormalization(Conv2D(dim, kernel_size=3, strides=1, padding='same', kernel_initializer=RandomNormal(0, 0.02))(x))))
return func
return func
def func(input):
input_len = len(input)
x = input[input_len-1]
for i in range(input_len-1, -1, -1):
for i in range(input_len-1, -1, -1):
x = upscale( min(ngf* (2**i) *4, ngf*8 *4 ) )(x)
if i != 0:
x = Concatenate(axis=3)([ input[i-1] , x])
return Conv2D(output_nc, 3, 1, 'same', activation=activation)(x)
return func
return func

View file

@ -10,13 +10,13 @@ from interact import interact as io
class Model(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs,
ask_write_preview_history=False,
super().__init__(*args, **kwargs,
ask_write_preview_history=False,
ask_target_iter=False,
ask_sort_by_yaw=False,
ask_random_flip=False,
ask_src_scale_mod=False)
#override
def onInitialize(self):
exec(nnlib.import_all(), locals(), globals())
@ -24,33 +24,34 @@ class Model(ModelBase):
self.resolution = 256
self.face_type = FaceType.FULL
self.fan_seg = FANSegmentator(self.resolution,
FaceType.toString(self.face_type),
self.fan_seg = FANSegmentator(self.resolution,
FaceType.toString(self.face_type),
load_weights=not self.is_first_run(),
weights_file_root=self.get_model_root_path() )
weights_file_root=self.get_model_root_path(),
training=True)
if self.is_training_mode:
f = SampleProcessor.TypeFlags
f_type = f.FACE_ALIGN_FULL
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True, normalize_tanh = True ),
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True, normalize_tanh = True ),
output_sample_types=[ [f.TRANSFORMED | f_type | f.MODE_BGR_SHUFFLE, self.resolution],
[f.TRANSFORMED | f_type | f.MODE_M | f.FACE_MASK_FULL, self.resolution]
]),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True, normalize_tanh = True ),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True, normalize_tanh = True ),
output_sample_types=[ [f.TRANSFORMED | f_type | f.MODE_BGR_SHUFFLE, self.resolution]
])
])
#override
def onSave(self):
def onSave(self):
self.fan_seg.save_weights()
#override
def onTrainOneIter(self, generators_samples, generators_list):
target_src, target_src_mask = generators_samples[0]
@ -58,20 +59,20 @@ class Model(ModelBase):
loss = self.fan_seg.train_on_batch( [target_src], [target_src_mask] )
return ( ('loss', loss), )
#override
def onGetPreview(self, sample):
test_A = sample[0][0][0:4] #first 4 samples
test_B = sample[1][0][0:4] #first 4 samples
mAA = self.fan_seg.extract_from_bgr([test_A])
mBB = self.fan_seg.extract_from_bgr([test_B])
test_A, test_B, = [ np.clip( (x + 1.0)/2.0, 0.0, 1.0) for x in [test_A, test_B] ]
mAA = np.repeat ( mAA, (3,), -1)
mBB = np.repeat ( mBB, (3,), -1)
st = []
for i in range(0, len(test_A)):
st.append ( np.concatenate ( (
@ -79,7 +80,7 @@ class Model(ModelBase):
mAA[i],
test_A[i,:,:,0:3]*mAA[i],
), axis=1) )
st2 = []
for i in range(0, len(test_B)):
st2.append ( np.concatenate ( (
@ -87,7 +88,7 @@ class Model(ModelBase):
mBB[i],
test_B[i,:,:,0:3]*mBB[i],
), axis=1) )
return [ ('FANSegmentator', np.concatenate ( st, axis=0 ) ),
('never seen', np.concatenate ( st2, axis=0 ) ),
]