mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-11 15:47:01 -07:00
global refactoring and fixes,
removed support of extracted(aligned) PNG faces. Use old builds to convert from PNG to JPG. fanseg model file in facelib/ is renamed
This commit is contained in:
parent
921b464d5b
commit
61472cdaf7
82 changed files with 3838 additions and 3812 deletions
|
@ -1,635 +1,19 @@
|
|||
import math
|
||||
import multiprocessing
|
||||
import operator
|
||||
import os
|
||||
import pickle
|
||||
import shutil
|
||||
import sys
|
||||
import time
|
||||
import traceback
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import numpy.linalg as npla
|
||||
|
||||
from core import imagelib
|
||||
import samplelib
|
||||
from merger import (MergerConfig, MergeFaceAvatar, MergeMasked,
|
||||
FrameInfo)
|
||||
from DFLIMG import DFLIMG
|
||||
from facelib import FaceEnhancer, FaceType, LandmarksProcessor, TernausNet
|
||||
from core.interact import interact as io
|
||||
from core.joblib import SubprocessFunctionCaller, Subprocessor
|
||||
from core.leras import nn
|
||||
from core import pathex
|
||||
from core.cv2ex import *
|
||||
|
||||
from .MergerScreen import Screen, ScreenManager
|
||||
|
||||
MERGER_DEBUG = False
|
||||
|
||||
class MergeSubprocessor(Subprocessor):
|
||||
|
||||
class Frame(object):
|
||||
def __init__(self, prev_temporal_frame_infos=None,
|
||||
frame_info=None,
|
||||
next_temporal_frame_infos=None):
|
||||
self.prev_temporal_frame_infos = prev_temporal_frame_infos
|
||||
self.frame_info = frame_info
|
||||
self.next_temporal_frame_infos = next_temporal_frame_infos
|
||||
self.output_filepath = None
|
||||
self.output_mask_filepath = None
|
||||
|
||||
self.idx = None
|
||||
self.cfg = None
|
||||
self.is_done = False
|
||||
self.is_processing = False
|
||||
self.is_shown = False
|
||||
self.image = None
|
||||
|
||||
class ProcessingFrame(object):
|
||||
def __init__(self, idx=None,
|
||||
cfg=None,
|
||||
prev_temporal_frame_infos=None,
|
||||
frame_info=None,
|
||||
next_temporal_frame_infos=None,
|
||||
output_filepath=None,
|
||||
output_mask_filepath=None,
|
||||
need_return_image = False):
|
||||
self.idx = idx
|
||||
self.cfg = cfg
|
||||
self.prev_temporal_frame_infos = prev_temporal_frame_infos
|
||||
self.frame_info = frame_info
|
||||
self.next_temporal_frame_infos = next_temporal_frame_infos
|
||||
self.output_filepath = output_filepath
|
||||
self.output_mask_filepath = output_mask_filepath
|
||||
|
||||
self.need_return_image = need_return_image
|
||||
if self.need_return_image:
|
||||
self.image = None
|
||||
|
||||
class Cli(Subprocessor.Cli):
|
||||
|
||||
#override
|
||||
def on_initialize(self, client_dict):
|
||||
self.log_info ('Running on %s.' % (client_dict['device_name']) )
|
||||
self.device_idx = client_dict['device_idx']
|
||||
self.device_name = client_dict['device_name']
|
||||
self.predictor_func = client_dict['predictor_func']
|
||||
self.predictor_input_shape = client_dict['predictor_input_shape']
|
||||
self.superres_func = client_dict['superres_func']
|
||||
self.fanseg_input_size = client_dict['fanseg_input_size']
|
||||
self.fanseg_extract_func = client_dict['fanseg_extract_func']
|
||||
|
||||
#transfer and set stdin in order to work code.interact in debug subprocess
|
||||
stdin_fd = client_dict['stdin_fd']
|
||||
if stdin_fd is not None:
|
||||
sys.stdin = os.fdopen(stdin_fd)
|
||||
|
||||
def blursharpen_func (img, sharpen_mode=0, kernel_size=3, amount=100):
|
||||
if kernel_size % 2 == 0:
|
||||
kernel_size += 1
|
||||
if amount > 0:
|
||||
if sharpen_mode == 1: #box
|
||||
kernel = np.zeros( (kernel_size, kernel_size), dtype=np.float32)
|
||||
kernel[ kernel_size//2, kernel_size//2] = 1.0
|
||||
box_filter = np.ones( (kernel_size, kernel_size), dtype=np.float32) / (kernel_size**2)
|
||||
kernel = kernel + (kernel - box_filter) * amount
|
||||
return cv2.filter2D(img, -1, kernel)
|
||||
elif sharpen_mode == 2: #gaussian
|
||||
blur = cv2.GaussianBlur(img, (kernel_size, kernel_size) , 0)
|
||||
img = cv2.addWeighted(img, 1.0 + (0.5 * amount), blur, -(0.5 * amount), 0)
|
||||
return img
|
||||
elif amount < 0:
|
||||
n = -amount
|
||||
while n > 0:
|
||||
|
||||
img_blur = cv2.medianBlur(img, 5)
|
||||
if int(n / 10) != 0:
|
||||
img = img_blur
|
||||
else:
|
||||
pass_power = (n % 10) / 10.0
|
||||
img = img*(1.0-pass_power)+img_blur*pass_power
|
||||
n = max(n-10,0)
|
||||
|
||||
return img
|
||||
return img
|
||||
self.blursharpen_func = blursharpen_func
|
||||
|
||||
return None
|
||||
|
||||
#override
|
||||
def process_data(self, pf): #pf=ProcessingFrame
|
||||
cfg = pf.cfg.copy()
|
||||
cfg.blursharpen_func = self.blursharpen_func
|
||||
cfg.superres_func = self.superres_func
|
||||
|
||||
frame_info = pf.frame_info
|
||||
filepath = frame_info.filepath
|
||||
|
||||
if len(frame_info.landmarks_list) == 0:
|
||||
self.log_info (f'no faces found for {filepath.name}, copying without faces')
|
||||
|
||||
img_bgr = cv2_imread(filepath)
|
||||
imagelib.normalize_channels(img_bgr, 3)
|
||||
cv2_imwrite (pf.output_filepath, img_bgr)
|
||||
h,w,c = img_bgr.shape
|
||||
|
||||
img_mask = np.zeros( (h,w,1), dtype=img_bgr.dtype)
|
||||
cv2_imwrite (pf.output_mask_filepath, img_mask)
|
||||
|
||||
if pf.need_return_image:
|
||||
pf.image = np.concatenate ([img_bgr, img_mask], axis=-1)
|
||||
|
||||
else:
|
||||
if cfg.type == MergerConfig.TYPE_MASKED:
|
||||
cfg.fanseg_input_size = self.fanseg_input_size
|
||||
cfg.fanseg_extract_func = self.fanseg_extract_func
|
||||
|
||||
try:
|
||||
final_img = MergeMasked (self.predictor_func, self.predictor_input_shape, cfg, frame_info)
|
||||
except Exception as e:
|
||||
e_str = traceback.format_exc()
|
||||
if 'MemoryError' in e_str:
|
||||
raise Subprocessor.SilenceException
|
||||
else:
|
||||
raise Exception( f'Error while merging file [{filepath}]: {e_str}' )
|
||||
|
||||
elif cfg.type == MergerConfig.TYPE_FACE_AVATAR:
|
||||
final_img = MergeFaceAvatar (self.predictor_func, self.predictor_input_shape,
|
||||
cfg, pf.prev_temporal_frame_infos,
|
||||
pf.frame_info,
|
||||
pf.next_temporal_frame_infos )
|
||||
|
||||
cv2_imwrite (pf.output_filepath, final_img[...,0:3] )
|
||||
cv2_imwrite (pf.output_mask_filepath, final_img[...,3:4] )
|
||||
|
||||
if pf.need_return_image:
|
||||
pf.image = final_img
|
||||
|
||||
return pf
|
||||
|
||||
#overridable
|
||||
def get_data_name (self, pf):
|
||||
#return string identificator of your data
|
||||
return pf.frame_info.filepath
|
||||
|
||||
#override
|
||||
def __init__(self, is_interactive, merger_session_filepath, predictor_func, predictor_input_shape, merger_config, frames, frames_root_path, output_path, output_mask_path, model_iter):
|
||||
if len (frames) == 0:
|
||||
raise ValueError ("len (frames) == 0")
|
||||
|
||||
super().__init__('Merger', MergeSubprocessor.Cli, io_loop_sleep_time=0.001)
|
||||
|
||||
self.is_interactive = is_interactive
|
||||
self.merger_session_filepath = Path(merger_session_filepath)
|
||||
self.merger_config = merger_config
|
||||
|
||||
self.predictor_func_host, self.predictor_func = SubprocessFunctionCaller.make_pair(predictor_func)
|
||||
self.predictor_input_shape = predictor_input_shape
|
||||
|
||||
self.face_enhancer = None
|
||||
def superres_func(face_bgr):
|
||||
if self.face_enhancer is None:
|
||||
self.face_enhancer = FaceEnhancer(place_model_on_cpu=True)
|
||||
|
||||
return self.face_enhancer.enhance (face_bgr, is_tanh=True, preserve_size=False)
|
||||
|
||||
self.superres_host, self.superres_func = SubprocessFunctionCaller.make_pair(superres_func)
|
||||
|
||||
self.fanseg_by_face_type = {}
|
||||
self.fanseg_input_size = 256
|
||||
def fanseg_extract_func(face_type, *args, **kwargs):
|
||||
fanseg = self.fanseg_by_face_type.get(face_type, None)
|
||||
if self.fanseg_by_face_type.get(face_type, None) is None:
|
||||
cpu_only = len(nn.getCurrentDeviceConfig().devices) == 0
|
||||
|
||||
with nn.tf.device('/CPU:0' if cpu_only else '/GPU:0'):
|
||||
fanseg = TernausNet("FANSeg", self.fanseg_input_size , FaceType.toString( face_type ), place_model_on_cpu=True )
|
||||
|
||||
self.fanseg_by_face_type[face_type] = fanseg
|
||||
return fanseg.extract(*args, **kwargs)
|
||||
|
||||
self.fanseg_host, self.fanseg_extract_func = SubprocessFunctionCaller.make_pair(fanseg_extract_func)
|
||||
|
||||
self.frames_root_path = frames_root_path
|
||||
self.output_path = output_path
|
||||
self.output_mask_path = output_mask_path
|
||||
self.model_iter = model_iter
|
||||
|
||||
self.prefetch_frame_count = self.process_count = multiprocessing.cpu_count()
|
||||
|
||||
session_data = None
|
||||
if self.is_interactive and self.merger_session_filepath.exists():
|
||||
io.input_skip_pending()
|
||||
if io.input_bool ("Use saved session?", True):
|
||||
try:
|
||||
with open( str(self.merger_session_filepath), "rb") as f:
|
||||
session_data = pickle.loads(f.read())
|
||||
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
rewind_to_frame_idx = None
|
||||
self.frames = frames
|
||||
self.frames_idxs = [ *range(len(self.frames)) ]
|
||||
self.frames_done_idxs = []
|
||||
|
||||
if self.is_interactive and session_data is not None:
|
||||
# Loaded session data, check it
|
||||
s_frames = session_data.get('frames', None)
|
||||
s_frames_idxs = session_data.get('frames_idxs', None)
|
||||
s_frames_done_idxs = session_data.get('frames_done_idxs', None)
|
||||
s_model_iter = session_data.get('model_iter', None)
|
||||
|
||||
frames_equal = (s_frames is not None) and \
|
||||
(s_frames_idxs is not None) and \
|
||||
(s_frames_done_idxs is not None) and \
|
||||
(s_model_iter is not None) and \
|
||||
(len(frames) == len(s_frames)) # frames count must match
|
||||
|
||||
if frames_equal:
|
||||
for i in range(len(frames)):
|
||||
frame = frames[i]
|
||||
s_frame = s_frames[i]
|
||||
# frames filenames must match
|
||||
if frame.frame_info.filepath.name != s_frame.frame_info.filepath.name:
|
||||
frames_equal = False
|
||||
if not frames_equal:
|
||||
break
|
||||
|
||||
if frames_equal:
|
||||
io.log_info ('Using saved session from ' + '/'.join (self.merger_session_filepath.parts[-2:]) )
|
||||
|
||||
for frame in s_frames:
|
||||
if frame.cfg is not None:
|
||||
# recreate MergerConfig class using constructor with get_config() as dict params
|
||||
# so if any new param will be added, old merger session will work properly
|
||||
frame.cfg = frame.cfg.__class__( **frame.cfg.get_config() )
|
||||
|
||||
self.frames = s_frames
|
||||
self.frames_idxs = s_frames_idxs
|
||||
self.frames_done_idxs = s_frames_done_idxs
|
||||
|
||||
if self.model_iter != s_model_iter:
|
||||
# model was more trained, recompute all frames
|
||||
rewind_to_frame_idx = -1
|
||||
for frame in self.frames:
|
||||
frame.is_done = False
|
||||
elif len(self.frames_idxs) == 0:
|
||||
# all frames are done?
|
||||
rewind_to_frame_idx = -1
|
||||
|
||||
if len(self.frames_idxs) != 0:
|
||||
cur_frame = self.frames[self.frames_idxs[0]]
|
||||
cur_frame.is_shown = False
|
||||
|
||||
if not frames_equal:
|
||||
session_data = None
|
||||
|
||||
if session_data is None:
|
||||
for filename in pathex.get_image_paths(self.output_path): #remove all images in output_path
|
||||
Path(filename).unlink()
|
||||
|
||||
for filename in pathex.get_image_paths(self.output_mask_path): #remove all images in output_mask_path
|
||||
Path(filename).unlink()
|
||||
|
||||
|
||||
frames[0].cfg = self.merger_config.copy()
|
||||
|
||||
for i in range( len(self.frames) ):
|
||||
frame = self.frames[i]
|
||||
frame.idx = i
|
||||
frame.output_filepath = self.output_path / ( frame.frame_info.filepath.stem + '.png' )
|
||||
frame.output_mask_filepath = self.output_mask_path / ( frame.frame_info.filepath.stem + '.png' )
|
||||
|
||||
if not frame.output_filepath.exists() or \
|
||||
not frame.output_mask_filepath.exists():
|
||||
# if some frame does not exist, recompute and rewind
|
||||
frame.is_done = False
|
||||
frame.is_shown = False
|
||||
|
||||
if rewind_to_frame_idx is None:
|
||||
rewind_to_frame_idx = i-1
|
||||
else:
|
||||
rewind_to_frame_idx = min(rewind_to_frame_idx, i-1)
|
||||
|
||||
if rewind_to_frame_idx is not None:
|
||||
while len(self.frames_done_idxs) > 0:
|
||||
if self.frames_done_idxs[-1] > rewind_to_frame_idx:
|
||||
prev_frame = self.frames[self.frames_done_idxs.pop()]
|
||||
self.frames_idxs.insert(0, prev_frame.idx)
|
||||
else:
|
||||
break
|
||||
#override
|
||||
def process_info_generator(self):
|
||||
r = [0] if MERGER_DEBUG else range(self.process_count)
|
||||
|
||||
for i in r:
|
||||
yield 'CPU%d' % (i), {}, {'device_idx': i,
|
||||
'device_name': 'CPU%d' % (i),
|
||||
'predictor_func': self.predictor_func,
|
||||
'predictor_input_shape' : self.predictor_input_shape,
|
||||
'superres_func': self.superres_func,
|
||||
'fanseg_input_size' : self.fanseg_input_size,
|
||||
'fanseg_extract_func' : self.fanseg_extract_func,
|
||||
'stdin_fd': sys.stdin.fileno() if MERGER_DEBUG else None
|
||||
}
|
||||
|
||||
#overridable optional
|
||||
def on_clients_initialized(self):
|
||||
io.progress_bar ("Merging", len(self.frames_idxs)+len(self.frames_done_idxs), initial=len(self.frames_done_idxs) )
|
||||
|
||||
self.process_remain_frames = not self.is_interactive
|
||||
self.is_interactive_quitting = not self.is_interactive
|
||||
|
||||
if self.is_interactive:
|
||||
help_images = {
|
||||
MergerConfig.TYPE_MASKED : cv2_imread ( str(Path(__file__).parent / 'gfx' / 'help_merger_masked.jpg') ),
|
||||
MergerConfig.TYPE_FACE_AVATAR : cv2_imread ( str(Path(__file__).parent / 'gfx' / 'help_merger_face_avatar.jpg') ),
|
||||
}
|
||||
|
||||
self.main_screen = Screen(initial_scale_to_width=1368, image=None, waiting_icon=True)
|
||||
self.help_screen = Screen(initial_scale_to_height=768, image=help_images[self.merger_config.type], waiting_icon=False)
|
||||
self.screen_manager = ScreenManager( "Merger", [self.main_screen, self.help_screen], capture_keys=True )
|
||||
self.screen_manager.set_current (self.help_screen)
|
||||
self.screen_manager.show_current()
|
||||
|
||||
self.masked_keys_funcs = {
|
||||
'`' : lambda cfg,shift_pressed: cfg.set_mode(0),
|
||||
'1' : lambda cfg,shift_pressed: cfg.set_mode(1),
|
||||
'2' : lambda cfg,shift_pressed: cfg.set_mode(2),
|
||||
'3' : lambda cfg,shift_pressed: cfg.set_mode(3),
|
||||
'4' : lambda cfg,shift_pressed: cfg.set_mode(4),
|
||||
'5' : lambda cfg,shift_pressed: cfg.set_mode(5),
|
||||
'q' : lambda cfg,shift_pressed: cfg.add_hist_match_threshold(1 if not shift_pressed else 5),
|
||||
'a' : lambda cfg,shift_pressed: cfg.add_hist_match_threshold(-1 if not shift_pressed else -5),
|
||||
'w' : lambda cfg,shift_pressed: cfg.add_erode_mask_modifier(1 if not shift_pressed else 5),
|
||||
's' : lambda cfg,shift_pressed: cfg.add_erode_mask_modifier(-1 if not shift_pressed else -5),
|
||||
'e' : lambda cfg,shift_pressed: cfg.add_blur_mask_modifier(1 if not shift_pressed else 5),
|
||||
'd' : lambda cfg,shift_pressed: cfg.add_blur_mask_modifier(-1 if not shift_pressed else -5),
|
||||
'r' : lambda cfg,shift_pressed: cfg.add_motion_blur_power(1 if not shift_pressed else 5),
|
||||
'f' : lambda cfg,shift_pressed: cfg.add_motion_blur_power(-1 if not shift_pressed else -5),
|
||||
't' : lambda cfg,shift_pressed: cfg.add_super_resolution_power(1 if not shift_pressed else 5),
|
||||
'g' : lambda cfg,shift_pressed: cfg.add_super_resolution_power(-1 if not shift_pressed else -5),
|
||||
'y' : lambda cfg,shift_pressed: cfg.add_blursharpen_amount(1 if not shift_pressed else 5),
|
||||
'h' : lambda cfg,shift_pressed: cfg.add_blursharpen_amount(-1 if not shift_pressed else -5),
|
||||
'u' : lambda cfg,shift_pressed: cfg.add_output_face_scale(1 if not shift_pressed else 5),
|
||||
'j' : lambda cfg,shift_pressed: cfg.add_output_face_scale(-1 if not shift_pressed else -5),
|
||||
'i' : lambda cfg,shift_pressed: cfg.add_image_denoise_power(1 if not shift_pressed else 5),
|
||||
'k' : lambda cfg,shift_pressed: cfg.add_image_denoise_power(-1 if not shift_pressed else -5),
|
||||
'o' : lambda cfg,shift_pressed: cfg.add_bicubic_degrade_power(1 if not shift_pressed else 5),
|
||||
'l' : lambda cfg,shift_pressed: cfg.add_bicubic_degrade_power(-1 if not shift_pressed else -5),
|
||||
'p' : lambda cfg,shift_pressed: cfg.add_color_degrade_power(1 if not shift_pressed else 5),
|
||||
';' : lambda cfg,shift_pressed: cfg.add_color_degrade_power(-1),
|
||||
':' : lambda cfg,shift_pressed: cfg.add_color_degrade_power(-5),
|
||||
'z' : lambda cfg,shift_pressed: cfg.toggle_masked_hist_match(),
|
||||
'x' : lambda cfg,shift_pressed: cfg.toggle_mask_mode(),
|
||||
'c' : lambda cfg,shift_pressed: cfg.toggle_color_transfer_mode(),
|
||||
'n' : lambda cfg,shift_pressed: cfg.toggle_sharpen_mode(),
|
||||
}
|
||||
self.masked_keys = list(self.masked_keys_funcs.keys())
|
||||
|
||||
#overridable optional
|
||||
def on_clients_finalized(self):
|
||||
io.progress_bar_close()
|
||||
|
||||
if self.is_interactive:
|
||||
self.screen_manager.finalize()
|
||||
|
||||
for frame in self.frames:
|
||||
frame.output_filepath = None
|
||||
frame.output_mask_filepath = None
|
||||
frame.image = None
|
||||
|
||||
session_data = {
|
||||
'frames': self.frames,
|
||||
'frames_idxs': self.frames_idxs,
|
||||
'frames_done_idxs': self.frames_done_idxs,
|
||||
'model_iter' : self.model_iter,
|
||||
}
|
||||
self.merger_session_filepath.write_bytes( pickle.dumps(session_data) )
|
||||
|
||||
io.log_info ("Session is saved to " + '/'.join (self.merger_session_filepath.parts[-2:]) )
|
||||
|
||||
#override
|
||||
def on_tick(self):
|
||||
self.predictor_func_host.process_messages()
|
||||
self.superres_host.process_messages()
|
||||
self.fanseg_host.process_messages()
|
||||
|
||||
go_prev_frame = False
|
||||
go_first_frame = False
|
||||
go_prev_frame_overriding_cfg = False
|
||||
go_first_frame_overriding_cfg = False
|
||||
|
||||
go_next_frame = self.process_remain_frames
|
||||
go_next_frame_overriding_cfg = False
|
||||
go_last_frame_overriding_cfg = False
|
||||
|
||||
cur_frame = None
|
||||
if len(self.frames_idxs) != 0:
|
||||
cur_frame = self.frames[self.frames_idxs[0]]
|
||||
|
||||
if self.is_interactive:
|
||||
|
||||
screen_image = None if self.process_remain_frames else \
|
||||
self.main_screen.get_image()
|
||||
|
||||
self.main_screen.set_waiting_icon( self.process_remain_frames or \
|
||||
self.is_interactive_quitting )
|
||||
|
||||
if cur_frame is not None and not self.is_interactive_quitting:
|
||||
|
||||
if not self.process_remain_frames:
|
||||
if cur_frame.is_done:
|
||||
if not cur_frame.is_shown:
|
||||
if cur_frame.image is None:
|
||||
image = cv2_imread (cur_frame.output_filepath, verbose=False)
|
||||
image_mask = cv2_imread (cur_frame.output_mask_filepath, verbose=False)
|
||||
if image is None or image_mask is None:
|
||||
# unable to read? recompute then
|
||||
cur_frame.is_done = False
|
||||
else:
|
||||
image_mask = imagelib.normalize_channels(image_mask, 1)
|
||||
cur_frame.image = np.concatenate([image, image_mask], -1)
|
||||
|
||||
if cur_frame.is_done:
|
||||
io.log_info (cur_frame.cfg.to_string( cur_frame.frame_info.filepath.name) )
|
||||
cur_frame.is_shown = True
|
||||
screen_image = cur_frame.image
|
||||
else:
|
||||
self.main_screen.set_waiting_icon(True)
|
||||
|
||||
self.main_screen.set_image(screen_image)
|
||||
self.screen_manager.show_current()
|
||||
|
||||
key_events = self.screen_manager.get_key_events()
|
||||
key, chr_key, ctrl_pressed, alt_pressed, shift_pressed = key_events[-1] if len(key_events) > 0 else (0,0,False,False,False)
|
||||
|
||||
if key == 9: #tab
|
||||
self.screen_manager.switch_screens()
|
||||
else:
|
||||
if key == 27: #esc
|
||||
self.is_interactive_quitting = True
|
||||
elif self.screen_manager.get_current() is self.main_screen:
|
||||
|
||||
if self.merger_config.type == MergerConfig.TYPE_MASKED and chr_key in self.masked_keys:
|
||||
self.process_remain_frames = False
|
||||
|
||||
if cur_frame is not None:
|
||||
cfg = cur_frame.cfg
|
||||
prev_cfg = cfg.copy()
|
||||
|
||||
if cfg.type == MergerConfig.TYPE_MASKED:
|
||||
self.masked_keys_funcs[chr_key](cfg, shift_pressed)
|
||||
|
||||
if prev_cfg != cfg:
|
||||
io.log_info ( cfg.to_string(cur_frame.frame_info.filepath.name) )
|
||||
cur_frame.is_done = False
|
||||
cur_frame.is_shown = False
|
||||
else:
|
||||
|
||||
if chr_key == ',' or chr_key == 'm':
|
||||
self.process_remain_frames = False
|
||||
go_prev_frame = True
|
||||
|
||||
if chr_key == ',':
|
||||
if shift_pressed:
|
||||
go_first_frame = True
|
||||
|
||||
elif chr_key == 'm':
|
||||
if not shift_pressed:
|
||||
go_prev_frame_overriding_cfg = True
|
||||
else:
|
||||
go_first_frame_overriding_cfg = True
|
||||
|
||||
elif chr_key == '.' or chr_key == '/':
|
||||
self.process_remain_frames = False
|
||||
go_next_frame = True
|
||||
|
||||
if chr_key == '.':
|
||||
if shift_pressed:
|
||||
self.process_remain_frames = not self.process_remain_frames
|
||||
|
||||
elif chr_key == '/':
|
||||
if not shift_pressed:
|
||||
go_next_frame_overriding_cfg = True
|
||||
else:
|
||||
go_last_frame_overriding_cfg = True
|
||||
|
||||
elif chr_key == '-':
|
||||
self.screen_manager.get_current().diff_scale(-0.1)
|
||||
elif chr_key == '=':
|
||||
self.screen_manager.get_current().diff_scale(0.1)
|
||||
elif chr_key == 'v':
|
||||
self.screen_manager.get_current().toggle_show_checker_board()
|
||||
|
||||
if go_prev_frame:
|
||||
if cur_frame is None or cur_frame.is_done:
|
||||
if cur_frame is not None:
|
||||
cur_frame.image = None
|
||||
|
||||
while True:
|
||||
if len(self.frames_done_idxs) > 0:
|
||||
prev_frame = self.frames[self.frames_done_idxs.pop()]
|
||||
self.frames_idxs.insert(0, prev_frame.idx)
|
||||
prev_frame.is_shown = False
|
||||
io.progress_bar_inc(-1)
|
||||
|
||||
if cur_frame is not None and (go_prev_frame_overriding_cfg or go_first_frame_overriding_cfg):
|
||||
if prev_frame.cfg != cur_frame.cfg:
|
||||
prev_frame.cfg = cur_frame.cfg.copy()
|
||||
prev_frame.is_done = False
|
||||
|
||||
cur_frame = prev_frame
|
||||
|
||||
if go_first_frame_overriding_cfg or go_first_frame:
|
||||
if len(self.frames_done_idxs) > 0:
|
||||
continue
|
||||
break
|
||||
|
||||
elif go_next_frame:
|
||||
if cur_frame is not None and cur_frame.is_done:
|
||||
cur_frame.image = None
|
||||
cur_frame.is_shown = True
|
||||
self.frames_done_idxs.append(cur_frame.idx)
|
||||
self.frames_idxs.pop(0)
|
||||
io.progress_bar_inc(1)
|
||||
|
||||
f = self.frames
|
||||
|
||||
if len(self.frames_idxs) != 0:
|
||||
next_frame = f[ self.frames_idxs[0] ]
|
||||
next_frame.is_shown = False
|
||||
|
||||
if go_next_frame_overriding_cfg or go_last_frame_overriding_cfg:
|
||||
|
||||
if go_next_frame_overriding_cfg:
|
||||
to_frames = next_frame.idx+1
|
||||
else:
|
||||
to_frames = len(f)
|
||||
|
||||
for i in range( next_frame.idx, to_frames ):
|
||||
f[i].cfg = None
|
||||
|
||||
for i in range( min(len(self.frames_idxs), self.prefetch_frame_count) ):
|
||||
frame = f[ self.frames_idxs[i] ]
|
||||
if frame.cfg is None:
|
||||
if i == 0:
|
||||
frame.cfg = cur_frame.cfg.copy()
|
||||
else:
|
||||
frame.cfg = f[ self.frames_idxs[i-1] ].cfg.copy()
|
||||
|
||||
frame.is_done = False #initiate solve again
|
||||
frame.is_shown = False
|
||||
|
||||
if len(self.frames_idxs) == 0:
|
||||
self.process_remain_frames = False
|
||||
|
||||
return (self.is_interactive and self.is_interactive_quitting) or \
|
||||
(not self.is_interactive and self.process_remain_frames == False)
|
||||
|
||||
|
||||
#override
|
||||
def on_data_return (self, host_dict, pf):
|
||||
frame = self.frames[pf.idx]
|
||||
frame.is_done = False
|
||||
frame.is_processing = False
|
||||
|
||||
#override
|
||||
def on_result (self, host_dict, pf_sent, pf_result):
|
||||
frame = self.frames[pf_result.idx]
|
||||
frame.is_processing = False
|
||||
if frame.cfg == pf_result.cfg:
|
||||
frame.is_done = True
|
||||
frame.image = pf_result.image
|
||||
|
||||
#override
|
||||
def get_data(self, host_dict):
|
||||
if self.is_interactive and self.is_interactive_quitting:
|
||||
return None
|
||||
|
||||
for i in range ( min(len(self.frames_idxs), self.prefetch_frame_count) ):
|
||||
frame = self.frames[ self.frames_idxs[i] ]
|
||||
|
||||
if not frame.is_done and not frame.is_processing and frame.cfg is not None:
|
||||
frame.is_processing = True
|
||||
return MergeSubprocessor.ProcessingFrame(idx=frame.idx,
|
||||
cfg=frame.cfg.copy(),
|
||||
prev_temporal_frame_infos=frame.prev_temporal_frame_infos,
|
||||
frame_info=frame.frame_info,
|
||||
next_temporal_frame_infos=frame.next_temporal_frame_infos,
|
||||
output_filepath=frame.output_filepath,
|
||||
output_mask_filepath=frame.output_mask_filepath,
|
||||
need_return_image=True )
|
||||
|
||||
return None
|
||||
|
||||
#override
|
||||
def get_result(self):
|
||||
return 0
|
||||
from core.interact import interact as io
|
||||
from core.joblib import MPClassFuncOnDemand, MPFunc
|
||||
from core.leras import nn
|
||||
from DFLIMG import DFLIMG
|
||||
from facelib import FaceEnhancer, FaceType, LandmarksProcessor, TernausNet, DFLSegNet
|
||||
from merger import FrameInfo, MergerConfig, InteractiveMergerSubprocessor
|
||||
|
||||
def main (model_class_name=None,
|
||||
saved_models_path=None,
|
||||
|
@ -658,23 +42,42 @@ def main (model_class_name=None,
|
|||
io.log_err('Model directory not found. Please ensure it exists.')
|
||||
return
|
||||
|
||||
is_interactive = io.input_bool ("Use interactive merger?", True) if not io.is_colab() else False
|
||||
|
||||
# Initialize model
|
||||
import models
|
||||
model = models.import_model(model_class_name)(is_training=False,
|
||||
saved_models_path=saved_models_path,
|
||||
training_data_src_path=training_data_src_path,
|
||||
force_gpu_idxs=force_gpu_idxs,
|
||||
cpu_only=cpu_only)
|
||||
merger_session_filepath = model.get_strpath_storage_for_file('merger_session.dat')
|
||||
|
||||
predictor_func, predictor_input_shape, cfg = model.get_MergerConfig()
|
||||
|
||||
# Preparing MP functions
|
||||
predictor_func = MPFunc(predictor_func)
|
||||
|
||||
run_on_cpu = len(nn.getCurrentDeviceConfig().devices) == 0
|
||||
fanseg_full_face_256_extract_func = MPClassFuncOnDemand(TernausNet, 'extract',
|
||||
name=f'FANSeg_{FaceType.toString(FaceType.FULL)}',
|
||||
resolution=256,
|
||||
place_model_on_cpu=True,
|
||||
run_on_cpu=run_on_cpu)
|
||||
|
||||
skinseg_256_extract_func = MPClassFuncOnDemand(DFLSegNet, 'extract',
|
||||
name='SkinSeg',
|
||||
resolution=256,
|
||||
place_model_on_cpu=True,
|
||||
run_on_cpu=run_on_cpu)
|
||||
|
||||
face_enhancer_func = MPClassFuncOnDemand(FaceEnhancer, 'enhance',
|
||||
place_model_on_cpu=True,
|
||||
run_on_cpu=run_on_cpu)
|
||||
|
||||
is_interactive = io.input_bool ("Use interactive merger?", True) if not io.is_colab() else False
|
||||
|
||||
if not is_interactive:
|
||||
cfg.ask_settings()
|
||||
|
||||
input_path_image_paths = pathex.get_image_paths(input_path)
|
||||
|
||||
|
||||
|
||||
if cfg.type == MergerConfig.TYPE_MASKED:
|
||||
if not aligned_path.exists():
|
||||
io.log_err('Aligned directory not found. Please ensure it exists.')
|
||||
|
@ -719,7 +122,7 @@ def main (model_class_name=None,
|
|||
|
||||
alignments_ar = alignments[ source_filename_stem ]
|
||||
alignments_ar.append ( (dflimg.get_source_landmarks(), filepath, source_filepath ) )
|
||||
|
||||
|
||||
if len(alignments_ar) > 1:
|
||||
multiple_faces_detected = True
|
||||
|
||||
|
@ -727,22 +130,22 @@ def main (model_class_name=None,
|
|||
io.log_info ("")
|
||||
io.log_info ("Warning: multiple faces detected. Only one alignment file should refer one source file.")
|
||||
io.log_info ("")
|
||||
|
||||
|
||||
for a_key in list(alignments.keys()):
|
||||
a_ar = alignments[a_key]
|
||||
if len(a_ar) > 1:
|
||||
for _, filepath, source_filepath in a_ar:
|
||||
for _, filepath, source_filepath in a_ar:
|
||||
io.log_info (f"alignment {filepath.name} refers to {source_filepath.name} ")
|
||||
io.log_info ("")
|
||||
|
||||
|
||||
alignments[a_key] = [ a[0] for a in a_ar]
|
||||
|
||||
|
||||
if multiple_faces_detected:
|
||||
io.log_info ("It is strongly recommended to process the faces separatelly.")
|
||||
io.log_info ("Use 'recover original filename' to determine the exact duplicates.")
|
||||
io.log_info ("")
|
||||
|
||||
frames = [ MergeSubprocessor.Frame( frame_info=FrameInfo(filepath=Path(p),
|
||||
frames = [ InteractiveMergerSubprocessor.Frame( frame_info=FrameInfo(filepath=Path(p),
|
||||
landmarks_list=alignments.get(Path(p).stem, None)
|
||||
)
|
||||
)
|
||||
|
@ -783,60 +186,66 @@ def main (model_class_name=None,
|
|||
fi.motion_deg = -math.atan2(motion_vector[1],motion_vector[0])*180 / math.pi
|
||||
|
||||
|
||||
elif cfg.type == MergerConfig.TYPE_FACE_AVATAR:
|
||||
pass
|
||||
"""
|
||||
filesdata = []
|
||||
for filepath in io.progress_bar_generator(input_path_image_paths, "Collecting info"):
|
||||
filepath = Path(filepath)
|
||||
|
||||
dflimg = DFLIMG.load(filepath)
|
||||
if dflimg is None:
|
||||
io.log_err ("%s is not a dfl image file" % (filepath.name) )
|
||||
continue
|
||||
filesdata += [ ( FrameInfo(filepath=filepath, landmarks_list=[dflimg.get_landmarks()] ), dflimg.get_source_filename() ) ]
|
||||
|
||||
filesdata = sorted(filesdata, key=operator.itemgetter(1)) #sort by source_filename
|
||||
frames = []
|
||||
filesdata_len = len(filesdata)
|
||||
for i in range(len(filesdata)):
|
||||
frame_info = filesdata[i][0]
|
||||
|
||||
prev_temporal_frame_infos = []
|
||||
next_temporal_frame_infos = []
|
||||
|
||||
for t in range (cfg.temporal_face_count):
|
||||
prev_frame_info = filesdata[ max(i -t, 0) ][0]
|
||||
next_frame_info = filesdata[ min(i +t, filesdata_len-1 )][0]
|
||||
|
||||
prev_temporal_frame_infos.insert (0, prev_frame_info )
|
||||
next_temporal_frame_infos.append ( next_frame_info )
|
||||
|
||||
frames.append ( MergeSubprocessor.Frame(prev_temporal_frame_infos=prev_temporal_frame_infos,
|
||||
frame_info=frame_info,
|
||||
next_temporal_frame_infos=next_temporal_frame_infos) )
|
||||
"""
|
||||
if len(frames) == 0:
|
||||
io.log_info ("No frames to merge in input_dir.")
|
||||
else:
|
||||
MergeSubprocessor (
|
||||
is_interactive = is_interactive,
|
||||
merger_session_filepath = merger_session_filepath,
|
||||
predictor_func = predictor_func,
|
||||
predictor_input_shape = predictor_input_shape,
|
||||
merger_config = cfg,
|
||||
frames = frames,
|
||||
frames_root_path = input_path,
|
||||
output_path = output_path,
|
||||
output_mask_path = output_mask_path,
|
||||
model_iter = model.get_iter()
|
||||
).run()
|
||||
if False:
|
||||
pass
|
||||
else:
|
||||
InteractiveMergerSubprocessor (
|
||||
is_interactive = is_interactive,
|
||||
merger_session_filepath = model.get_strpath_storage_for_file('merger_session.dat'),
|
||||
predictor_func = predictor_func,
|
||||
predictor_input_shape = predictor_input_shape,
|
||||
face_enhancer_func = face_enhancer_func,
|
||||
fanseg_full_face_256_extract_func = fanseg_full_face_256_extract_func,
|
||||
skinseg_256_extract_func = skinseg_256_extract_func,
|
||||
merger_config = cfg,
|
||||
frames = frames,
|
||||
frames_root_path = input_path,
|
||||
output_path = output_path,
|
||||
output_mask_path = output_mask_path,
|
||||
model_iter = model.get_iter()
|
||||
).run()
|
||||
|
||||
model.finalize()
|
||||
|
||||
except Exception as e:
|
||||
print ( 'Error: %s' % (str(e)))
|
||||
traceback.print_exc()
|
||||
print ( traceback.format_exc() )
|
||||
|
||||
|
||||
"""
|
||||
elif cfg.type == MergerConfig.TYPE_FACE_AVATAR:
|
||||
filesdata = []
|
||||
for filepath in io.progress_bar_generator(input_path_image_paths, "Collecting info"):
|
||||
filepath = Path(filepath)
|
||||
|
||||
dflimg = DFLIMG.load(filepath)
|
||||
if dflimg is None:
|
||||
io.log_err ("%s is not a dfl image file" % (filepath.name) )
|
||||
continue
|
||||
filesdata += [ ( FrameInfo(filepath=filepath, landmarks_list=[dflimg.get_landmarks()] ), dflimg.get_source_filename() ) ]
|
||||
|
||||
filesdata = sorted(filesdata, key=operator.itemgetter(1)) #sort by source_filename
|
||||
frames = []
|
||||
filesdata_len = len(filesdata)
|
||||
for i in range(len(filesdata)):
|
||||
frame_info = filesdata[i][0]
|
||||
|
||||
prev_temporal_frame_infos = []
|
||||
next_temporal_frame_infos = []
|
||||
|
||||
for t in range (cfg.temporal_face_count):
|
||||
prev_frame_info = filesdata[ max(i -t, 0) ][0]
|
||||
next_frame_info = filesdata[ min(i +t, filesdata_len-1 )][0]
|
||||
|
||||
prev_temporal_frame_infos.insert (0, prev_frame_info )
|
||||
next_temporal_frame_infos.append ( next_frame_info )
|
||||
|
||||
frames.append ( InteractiveMergerSubprocessor.Frame(prev_temporal_frame_infos=prev_temporal_frame_infos,
|
||||
frame_info=frame_info,
|
||||
next_temporal_frame_infos=next_temporal_frame_infos) )
|
||||
"""
|
||||
|
||||
#interpolate landmarks
|
||||
#from facelib import LandmarksProcessor
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue