mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 05:22:06 -07:00
increased speed of train on H64, H128 models.
This commit is contained in:
parent
77640259fc
commit
612ef5155e
2 changed files with 159 additions and 134 deletions
|
@ -17,30 +17,35 @@ class Model(ModelBase):
|
||||||
|
|
||||||
#override
|
#override
|
||||||
def onInitialize(self, **in_options):
|
def onInitialize(self, **in_options):
|
||||||
|
tf = self.tf
|
||||||
|
keras = self.keras
|
||||||
|
K = keras.backend
|
||||||
self.set_vram_batch_requirements( {2.5:2,3:2,4:2,4:4,5:8,6:8,7:16,8:16,9:24,10:24,11:32,12:32,13:48} )
|
self.set_vram_batch_requirements( {2.5:2,3:2,4:2,4:4,5:8,6:8,7:16,8:16,9:24,10:24,11:32,12:32,13:48} )
|
||||||
|
|
||||||
ae_input_layer = self.keras.layers.Input(shape=(128, 128, 3))
|
bgr_shape, mask_shape, self.encoder, self.decoder_src, self.decoder_dst = self.Build(self.created_vram_gb)
|
||||||
mask_layer = self.keras.layers.Input(shape=(128, 128, 1)) #same as output
|
|
||||||
|
|
||||||
self.encoder = self.Encoder(ae_input_layer, self.created_vram_gb)
|
|
||||||
self.decoder_src = self.Decoder(self.created_vram_gb)
|
|
||||||
self.decoder_dst = self.Decoder(self.created_vram_gb)
|
|
||||||
|
|
||||||
if not self.is_first_run():
|
if not self.is_first_run():
|
||||||
self.encoder.load_weights (self.get_strpath_storage_for_file(self.encoderH5))
|
self.encoder.load_weights (self.get_strpath_storage_for_file(self.encoderH5))
|
||||||
self.decoder_src.load_weights (self.get_strpath_storage_for_file(self.decoder_srcH5))
|
self.decoder_src.load_weights (self.get_strpath_storage_for_file(self.decoder_srcH5))
|
||||||
self.decoder_dst.load_weights (self.get_strpath_storage_for_file(self.decoder_dstH5))
|
self.decoder_dst.load_weights (self.get_strpath_storage_for_file(self.decoder_dstH5))
|
||||||
|
|
||||||
self.autoencoder_src = self.keras.models.Model([ae_input_layer,mask_layer], self.decoder_src(self.encoder(ae_input_layer)))
|
input_src_bgr = self.keras.layers.Input(bgr_shape)
|
||||||
self.autoencoder_dst = self.keras.models.Model([ae_input_layer,mask_layer], self.decoder_dst(self.encoder(ae_input_layer)))
|
input_src_mask = self.keras.layers.Input(mask_shape)
|
||||||
|
input_dst_bgr = self.keras.layers.Input(bgr_shape)
|
||||||
|
input_dst_mask = self.keras.layers.Input(mask_shape)
|
||||||
|
|
||||||
|
rec_src_bgr, rec_src_mask = self.decoder_src( self.encoder(input_src_bgr) )
|
||||||
|
rec_dst_bgr, rec_dst_mask = self.decoder_dst( self.encoder(input_dst_bgr) )
|
||||||
|
|
||||||
|
self.ae = self.keras.models.Model([input_src_bgr,input_src_mask,input_dst_bgr,input_dst_mask], [rec_src_bgr, rec_src_mask, rec_dst_bgr, rec_dst_mask] )
|
||||||
|
|
||||||
if self.is_training_mode:
|
if self.is_training_mode:
|
||||||
self.autoencoder_src, self.autoencoder_dst = self.to_multi_gpu_model_if_possible ( [self.autoencoder_src, self.autoencoder_dst] )
|
self.ae, = self.to_multi_gpu_model_if_possible ( [self.ae,] )
|
||||||
|
|
||||||
optimizer = self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999)
|
self.ae.compile(optimizer=self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),
|
||||||
dssimloss = DSSIMMaskLossClass(self.tf)([mask_layer])
|
loss=[ DSSIMMaskLossClass(self.tf)([input_src_mask]), 'mae', DSSIMMaskLossClass(self.tf)([input_dst_mask]), 'mae' ] )
|
||||||
self.autoencoder_src.compile(optimizer=optimizer, loss=[dssimloss, 'mae'])
|
|
||||||
self.autoencoder_dst.compile(optimizer=optimizer, loss=[dssimloss, 'mae'])
|
self.src_view = K.function([input_src_bgr],[rec_src_bgr, rec_src_mask])
|
||||||
|
self.dst_view = K.function([input_dst_bgr],[rec_dst_bgr, rec_dst_mask])
|
||||||
|
|
||||||
if self.is_training_mode:
|
if self.is_training_mode:
|
||||||
from models import TrainingDataGenerator
|
from models import TrainingDataGenerator
|
||||||
|
@ -61,10 +66,9 @@ class Model(ModelBase):
|
||||||
warped_src, target_src, target_src_mask = sample[0]
|
warped_src, target_src, target_src_mask = sample[0]
|
||||||
warped_dst, target_dst, target_dst_mask = sample[1]
|
warped_dst, target_dst, target_dst_mask = sample[1]
|
||||||
|
|
||||||
loss_src = self.autoencoder_src.train_on_batch( [warped_src, target_src_mask], [target_src, target_src_mask] )
|
total, loss_src_bgr, loss_src_mask, loss_dst_bgr, loss_dst_mask = self.ae.train_on_batch( [warped_src, target_src_mask, warped_dst, target_dst_mask], [target_src, target_src_mask, target_dst, target_dst_mask] )
|
||||||
loss_dst = self.autoencoder_dst.train_on_batch( [warped_dst, target_dst_mask], [target_dst, target_dst_mask] )
|
|
||||||
|
|
||||||
return ( ('loss_src', loss_src[0]), ('loss_dst', loss_dst[0]) )
|
return ( ('loss_src', loss_src_bgr), ('loss_dst', loss_dst_bgr) )
|
||||||
|
|
||||||
#override
|
#override
|
||||||
def onGetPreview(self, sample):
|
def onGetPreview(self, sample):
|
||||||
|
@ -72,9 +76,10 @@ class Model(ModelBase):
|
||||||
test_A_m = sample[0][2][0:4] #first 4 samples
|
test_A_m = sample[0][2][0:4] #first 4 samples
|
||||||
test_B = sample[1][1][0:4]
|
test_B = sample[1][1][0:4]
|
||||||
test_B_m = sample[1][2][0:4]
|
test_B_m = sample[1][2][0:4]
|
||||||
AA, mAA = self.autoencoder_src.predict([test_A, test_A_m])
|
|
||||||
AB, mAB = self.autoencoder_src.predict([test_B, test_B_m])
|
AA, mAA = self.src_view([test_A])
|
||||||
BB, mBB = self.autoencoder_dst.predict([test_B, test_B_m])
|
AB, mAB = self.src_view([test_B])
|
||||||
|
BB, mBB = self.dst_view([test_B])
|
||||||
|
|
||||||
mAA = np.repeat ( mAA, (3,), -1)
|
mAA = np.repeat ( mAA, (3,), -1)
|
||||||
mAB = np.repeat ( mAB, (3,), -1)
|
mAB = np.repeat ( mAB, (3,), -1)
|
||||||
|
@ -99,7 +104,7 @@ class Model(ModelBase):
|
||||||
face_128_bgr = face[...,0:3]
|
face_128_bgr = face[...,0:3]
|
||||||
face_128_mask = np.expand_dims(face[...,3],-1)
|
face_128_mask = np.expand_dims(face[...,3],-1)
|
||||||
|
|
||||||
x, mx = self.autoencoder_src.predict ( [ np.expand_dims(face_128_bgr,0), np.expand_dims(face_128_mask,0) ] )
|
x, mx = self.src_view ( [ np.expand_dims(face_128_bgr,0) ] )
|
||||||
x, mx = x[0], mx[0]
|
x, mx = x[0], mx[0]
|
||||||
|
|
||||||
return np.concatenate ( (x,mx), -1 )
|
return np.concatenate ( (x,mx), -1 )
|
||||||
|
@ -121,9 +126,13 @@ class Model(ModelBase):
|
||||||
|
|
||||||
return ConverterMasked(self.predictor_func, predictor_input_size=128, output_size=128, face_type=FaceType.HALF, **in_options)
|
return ConverterMasked(self.predictor_func, predictor_input_size=128, output_size=128, face_type=FaceType.HALF, **in_options)
|
||||||
|
|
||||||
def Encoder(self, input_layer, created_vram_gb):
|
def Build(self, created_vram_gb):
|
||||||
x = input_layer
|
bgr_shape = (128, 128, 3)
|
||||||
|
mask_shape = (128, 128, 1)
|
||||||
|
|
||||||
|
def Encoder(input_shape):
|
||||||
|
input_layer = self.keras.layers.Input(input_shape)
|
||||||
|
x = input_layer
|
||||||
if created_vram_gb >= 5:
|
if created_vram_gb >= 5:
|
||||||
x = conv(self.keras, x, 128)
|
x = conv(self.keras, x, 128)
|
||||||
x = conv(self.keras, x, 256)
|
x = conv(self.keras, x, 256)
|
||||||
|
@ -145,7 +154,7 @@ class Model(ModelBase):
|
||||||
|
|
||||||
return self.keras.models.Model(input_layer, x)
|
return self.keras.models.Model(input_layer, x)
|
||||||
|
|
||||||
def Decoder(self, created_vram_gb):
|
def Decoder():
|
||||||
if created_vram_gb >= 5:
|
if created_vram_gb >= 5:
|
||||||
input_ = self.keras.layers.Input(shape=(16, 16, 512))
|
input_ = self.keras.layers.Input(shape=(16, 16, 512))
|
||||||
x = input_
|
x = input_
|
||||||
|
@ -171,4 +180,8 @@ class Model(ModelBase):
|
||||||
|
|
||||||
x = self.keras.layers.convolutional.Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
|
x = self.keras.layers.convolutional.Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
|
||||||
y = self.keras.layers.convolutional.Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(y)
|
y = self.keras.layers.convolutional.Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(y)
|
||||||
|
|
||||||
|
|
||||||
return self.keras.models.Model(input_, [x,y])
|
return self.keras.models.Model(input_, [x,y])
|
||||||
|
|
||||||
|
return bgr_shape, mask_shape, Encoder(bgr_shape), Decoder(), Decoder()
|
||||||
|
|
|
@ -15,30 +15,35 @@ class Model(ModelBase):
|
||||||
|
|
||||||
#override
|
#override
|
||||||
def onInitialize(self, **in_options):
|
def onInitialize(self, **in_options):
|
||||||
|
tf = self.tf
|
||||||
|
keras = self.keras
|
||||||
|
K = keras.backend
|
||||||
self.set_vram_batch_requirements( {1.5:2,2:2,3:4,4:8,5:16,6:32,7:32,8:32,9:48} )
|
self.set_vram_batch_requirements( {1.5:2,2:2,3:4,4:8,5:16,6:32,7:32,8:32,9:48} )
|
||||||
|
|
||||||
ae_input_layer = self.keras.layers.Input(shape=(64, 64, 3))
|
bgr_shape, mask_shape, self.encoder, self.decoder_src, self.decoder_dst = self.Build(self.created_vram_gb)
|
||||||
mask_layer = self.keras.layers.Input(shape=(64, 64, 1)) #same as output
|
|
||||||
|
|
||||||
self.encoder = self.Encoder(ae_input_layer, self.created_vram_gb)
|
|
||||||
self.decoder_src = self.Decoder(self.created_vram_gb)
|
|
||||||
self.decoder_dst = self.Decoder(self.created_vram_gb)
|
|
||||||
|
|
||||||
if not self.is_first_run():
|
if not self.is_first_run():
|
||||||
self.encoder.load_weights (self.get_strpath_storage_for_file(self.encoderH5))
|
self.encoder.load_weights (self.get_strpath_storage_for_file(self.encoderH5))
|
||||||
self.decoder_src.load_weights (self.get_strpath_storage_for_file(self.decoder_srcH5))
|
self.decoder_src.load_weights (self.get_strpath_storage_for_file(self.decoder_srcH5))
|
||||||
self.decoder_dst.load_weights (self.get_strpath_storage_for_file(self.decoder_dstH5))
|
self.decoder_dst.load_weights (self.get_strpath_storage_for_file(self.decoder_dstH5))
|
||||||
|
|
||||||
self.autoencoder_src = self.keras.models.Model([ae_input_layer,mask_layer], self.decoder_src(self.encoder(ae_input_layer)))
|
input_src_bgr = self.keras.layers.Input(bgr_shape)
|
||||||
self.autoencoder_dst = self.keras.models.Model([ae_input_layer,mask_layer], self.decoder_dst(self.encoder(ae_input_layer)))
|
input_src_mask = self.keras.layers.Input(mask_shape)
|
||||||
|
input_dst_bgr = self.keras.layers.Input(bgr_shape)
|
||||||
|
input_dst_mask = self.keras.layers.Input(mask_shape)
|
||||||
|
|
||||||
|
rec_src_bgr, rec_src_mask = self.decoder_src( self.encoder(input_src_bgr) )
|
||||||
|
rec_dst_bgr, rec_dst_mask = self.decoder_dst( self.encoder(input_dst_bgr) )
|
||||||
|
|
||||||
|
self.ae = self.keras.models.Model([input_src_bgr,input_src_mask,input_dst_bgr,input_dst_mask], [rec_src_bgr, rec_src_mask, rec_dst_bgr, rec_dst_mask] )
|
||||||
|
|
||||||
if self.is_training_mode:
|
if self.is_training_mode:
|
||||||
self.autoencoder_src, self.autoencoder_dst = self.to_multi_gpu_model_if_possible ( [self.autoencoder_src, self.autoencoder_dst] )
|
self.ae, = self.to_multi_gpu_model_if_possible ( [self.ae,] )
|
||||||
|
|
||||||
optimizer = self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999)
|
self.ae.compile(optimizer=self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),
|
||||||
dssimloss = DSSIMMaskLossClass(self.tf)([mask_layer])
|
loss=[ DSSIMMaskLossClass(self.tf)([input_src_mask]), 'mae', DSSIMMaskLossClass(self.tf)([input_dst_mask]), 'mae' ] )
|
||||||
self.autoencoder_src.compile(optimizer=optimizer, loss=[dssimloss, 'mae'])
|
|
||||||
self.autoencoder_dst.compile(optimizer=optimizer, loss=[dssimloss, 'mae'])
|
self.src_view = K.function([input_src_bgr],[rec_src_bgr, rec_src_mask])
|
||||||
|
self.dst_view = K.function([input_dst_bgr],[rec_dst_bgr, rec_dst_mask])
|
||||||
|
|
||||||
if self.is_training_mode:
|
if self.is_training_mode:
|
||||||
from models import TrainingDataGenerator
|
from models import TrainingDataGenerator
|
||||||
|
@ -59,10 +64,10 @@ class Model(ModelBase):
|
||||||
warped_src, target_src, target_src_full_mask = sample[0]
|
warped_src, target_src, target_src_full_mask = sample[0]
|
||||||
warped_dst, target_dst, target_dst_full_mask = sample[1]
|
warped_dst, target_dst, target_dst_full_mask = sample[1]
|
||||||
|
|
||||||
loss_src = self.autoencoder_src.train_on_batch( [warped_src, target_src_full_mask], [target_src, target_src_full_mask] )
|
|
||||||
loss_dst = self.autoencoder_dst.train_on_batch( [warped_dst, target_dst_full_mask], [target_dst, target_dst_full_mask] )
|
|
||||||
|
|
||||||
return ( ('loss_src', loss_src[0]), ('loss_dst', loss_dst[0]) )
|
total, loss_src_bgr, loss_src_mask, loss_dst_bgr, loss_dst_mask = self.ae.train_on_batch( [warped_src, target_src_full_mask, warped_dst, target_dst_full_mask], [target_src, target_src_full_mask, target_dst, target_dst_full_mask] )
|
||||||
|
|
||||||
|
return ( ('loss_src', loss_src_bgr), ('loss_dst', loss_dst_bgr) )
|
||||||
|
|
||||||
#override
|
#override
|
||||||
def onGetPreview(self, sample):
|
def onGetPreview(self, sample):
|
||||||
|
@ -71,9 +76,9 @@ class Model(ModelBase):
|
||||||
test_B = sample[1][1][0:4]
|
test_B = sample[1][1][0:4]
|
||||||
test_B_m = sample[1][2][0:4]
|
test_B_m = sample[1][2][0:4]
|
||||||
|
|
||||||
AA, mAA = self.autoencoder_src.predict([test_A, test_A_m])
|
AA, mAA = self.src_view([test_A])
|
||||||
AB, mAB = self.autoencoder_src.predict([test_B, test_B_m])
|
AB, mAB = self.src_view([test_B])
|
||||||
BB, mBB = self.autoencoder_dst.predict([test_B, test_B_m])
|
BB, mBB = self.dst_view([test_B])
|
||||||
|
|
||||||
mAA = np.repeat ( mAA, (3,), -1)
|
mAA = np.repeat ( mAA, (3,), -1)
|
||||||
mAB = np.repeat ( mAB, (3,), -1)
|
mAB = np.repeat ( mAB, (3,), -1)
|
||||||
|
@ -99,7 +104,7 @@ class Model(ModelBase):
|
||||||
face_64_bgr = face[...,0:3]
|
face_64_bgr = face[...,0:3]
|
||||||
face_64_mask = np.expand_dims(face[...,3],-1)
|
face_64_mask = np.expand_dims(face[...,3],-1)
|
||||||
|
|
||||||
x, mx = self.autoencoder_src.predict ( [ np.expand_dims(face_64_bgr,0), np.expand_dims(face_64_mask,0) ] )
|
x, mx = self.src_view ( [ np.expand_dims(face_64_bgr,0) ] )
|
||||||
x, mx = x[0], mx[0]
|
x, mx = x[0], mx[0]
|
||||||
|
|
||||||
return np.concatenate ( (x,mx), -1 )
|
return np.concatenate ( (x,mx), -1 )
|
||||||
|
@ -121,7 +126,12 @@ class Model(ModelBase):
|
||||||
|
|
||||||
return ConverterMasked(self.predictor_func, predictor_input_size=64, output_size=64, face_type=FaceType.HALF, **in_options)
|
return ConverterMasked(self.predictor_func, predictor_input_size=64, output_size=64, face_type=FaceType.HALF, **in_options)
|
||||||
|
|
||||||
def Encoder(self, input_layer, created_vram_gb):
|
def Build(self, created_vram_gb):
|
||||||
|
bgr_shape = (64, 64, 3)
|
||||||
|
mask_shape = (64, 64, 1)
|
||||||
|
|
||||||
|
def Encoder(input_shape):
|
||||||
|
input_layer = self.keras.layers.Input(input_shape)
|
||||||
x = input_layer
|
x = input_layer
|
||||||
if created_vram_gb >= 4:
|
if created_vram_gb >= 4:
|
||||||
x = conv(self.keras, x, 128)
|
x = conv(self.keras, x, 128)
|
||||||
|
@ -144,7 +154,7 @@ class Model(ModelBase):
|
||||||
|
|
||||||
return self.keras.models.Model(input_layer, x)
|
return self.keras.models.Model(input_layer, x)
|
||||||
|
|
||||||
def Decoder(self, created_vram_gb):
|
def Decoder():
|
||||||
if created_vram_gb >= 4:
|
if created_vram_gb >= 4:
|
||||||
input_ = self.keras.layers.Input(shape=(8, 8, 512))
|
input_ = self.keras.layers.Input(shape=(8, 8, 512))
|
||||||
else:
|
else:
|
||||||
|
@ -165,3 +175,5 @@ class Model(ModelBase):
|
||||||
|
|
||||||
|
|
||||||
return self.keras.models.Model(input_, [x,y])
|
return self.keras.models.Model(input_, [x,y])
|
||||||
|
|
||||||
|
return bgr_shape, mask_shape, Encoder(bgr_shape), Decoder(), Decoder()
|
Loading…
Add table
Add a link
Reference in a new issue