mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-19 21:13:20 -07:00
Merge branch 'master' into preview_filenames
This commit is contained in:
commit
611447bf6f
22 changed files with 984 additions and 273 deletions
|
@ -18,7 +18,7 @@ from .common import random_crop, normalize_channels, cut_odd_image, overlay_alph
|
|||
|
||||
from .SegIEPolys import *
|
||||
|
||||
from .blursharpen import LinearMotionBlur, blursharpen
|
||||
from .blursharpen import LinearMotionBlur, blursharpen, gaussian_sharpen, unsharpen_mask
|
||||
|
||||
from .filters import apply_random_rgb_levels, \
|
||||
apply_random_overlay_triangle, \
|
||||
|
|
|
@ -22,6 +22,8 @@ def blursharpen (img, sharpen_mode=0, kernel_size=3, amount=100):
|
|||
blur = cv2.GaussianBlur(img, (kernel_size, kernel_size) , 0)
|
||||
img = cv2.addWeighted(img, 1.0 + (0.5 * amount), blur, -(0.5 * amount), 0)
|
||||
return img
|
||||
elif sharpen_mode == 3: #unsharpen_mask
|
||||
img = unsharpen_mask(img, amount=amount)
|
||||
elif amount < 0:
|
||||
n = -amount
|
||||
while n > 0:
|
||||
|
@ -35,4 +37,18 @@ def blursharpen (img, sharpen_mode=0, kernel_size=3, amount=100):
|
|||
n = max(n-10,0)
|
||||
|
||||
return img
|
||||
return img
|
||||
|
||||
def gaussian_sharpen(img, amount=100, sigma=1.0):
|
||||
img = cv2.addWeighted(img, 1.0 + (0.05 * amount), cv2.GaussianBlur(img, (0, 0), sigma), -(0.05 * amount), 0)
|
||||
return img
|
||||
|
||||
def unsharpen_mask(img, amount=100, sigma=0.0, threshold = (5.0 / 255.0)):
|
||||
radius = max(1, round(img.shape[0] * (amount / 100)))
|
||||
kernel_size = int((radius * 2) + 1)
|
||||
kernel_size = (kernel_size, kernel_size)
|
||||
blur = cv2.GaussianBlur(img, kernel_size, sigma)
|
||||
low_contrast_mask = (abs(img - blur) < threshold).astype("float32")
|
||||
sharpened = (img * (1.0 + (0.05 * amount))) + (blur * -(0.05 * amount))
|
||||
img = (img * (1.0 - low_contrast_mask)) + (sharpened * low_contrast_mask)
|
||||
return img
|
4
main.py
4
main.py
|
@ -131,6 +131,8 @@ if __name__ == "__main__":
|
|||
'start_tensorboard' : arguments.start_tensorboard,
|
||||
'dump_ckpt' : arguments.dump_ckpt,
|
||||
'flask_preview' : arguments.flask_preview,
|
||||
'config_training_file' : arguments.config_training_file,
|
||||
'auto_gen_config' : arguments.auto_gen_config
|
||||
}
|
||||
from mainscripts import Trainer
|
||||
Trainer.main(**kwargs)
|
||||
|
@ -150,6 +152,8 @@ if __name__ == "__main__":
|
|||
p.add_argument('--silent-start', action="store_true", dest="silent_start", default=False, help="Silent start. Automatically chooses Best GPU and last used model.")
|
||||
p.add_argument('--tensorboard-logdir', action=fixPathAction, dest="tensorboard_dir", help="Directory of the tensorboard output files")
|
||||
p.add_argument('--start-tensorboard', action="store_true", dest="start_tensorboard", default=False, help="Automatically start the tensorboard server preconfigured to the tensorboard-logdir")
|
||||
p.add_argument('--config-training-file', action=fixPathAction, dest="config_training_file", help="Path to custom yaml configuration file")
|
||||
p.add_argument('--auto-gen-config', action="store_true", dest="auto_gen_config", default=False, help="Saves a configuration file for each model used in the trainer. It'll have the same model name")
|
||||
|
||||
|
||||
p.add_argument('--dump-ckpt', action="store_true", dest="dump_ckpt", default=False, help="Dump the model to ckpt format.")
|
||||
|
|
|
@ -146,17 +146,20 @@ def main (model_class_name=None,
|
|||
io.log_info ("Use 'recover original filename' to determine the exact duplicates.")
|
||||
io.log_info ("")
|
||||
|
||||
|
||||
|
||||
# build frames maunally
|
||||
frames = []
|
||||
for p in input_path_image_paths:
|
||||
path = Path(p)
|
||||
data = alignments.get(path.stem, None)
|
||||
if data == None:
|
||||
frame = InteractiveMergerSubprocessor.Frame(FrameInfo(frame_info=frame_info))
|
||||
cur_path = Path(p)
|
||||
data = alignments.get(cur_path.stem, None)
|
||||
if data == None:
|
||||
frame_info=FrameInfo(filepath=cur_path)
|
||||
frame = InteractiveMergerSubprocessor.Frame(frame_info=frame_info)
|
||||
else:
|
||||
landmarks_list = [d[0] for d in data]
|
||||
dfl_images_list = [d[1] for d in data]
|
||||
frame_info=FrameInfo(filepath=path, landmarks_list=landmarks_list, dfl_images_list=dfl_images_list)
|
||||
frame_info=FrameInfo(filepath=cur_path, landmarks_list=landmarks_list, dfl_images_list=dfl_images_list)
|
||||
frame = InteractiveMergerSubprocessor.Frame(frame_info=frame_info)
|
||||
|
||||
frames.append(frame)
|
||||
|
|
|
@ -71,6 +71,7 @@ def trainerThread (s2c, c2s, e,
|
|||
debug=False,
|
||||
tensorboard_dir=None,
|
||||
start_tensorboard=False,
|
||||
config_training_file=None,
|
||||
dump_ckpt=False,
|
||||
**kwargs):
|
||||
while True:
|
||||
|
@ -101,6 +102,8 @@ def trainerThread (s2c, c2s, e,
|
|||
force_gpu_idxs=force_gpu_idxs,
|
||||
cpu_only=cpu_only,
|
||||
silent_start=silent_start,
|
||||
config_training_file=config_training_file,
|
||||
auto_gen_config=kwargs.get("auto_gen_config", False),
|
||||
debug=debug)
|
||||
|
||||
is_reached_goal = model.is_reached_iter_goal()
|
||||
|
|
|
@ -330,7 +330,13 @@ class InteractiveMergerSubprocessor(Subprocessor):
|
|||
'z' : lambda cfg,shift_pressed: cfg.toggle_masked_hist_match(),
|
||||
'x' : lambda cfg,shift_pressed: cfg.toggle_mask_mode(),
|
||||
'c' : lambda cfg,shift_pressed: cfg.toggle_color_transfer_mode(),
|
||||
'n' : lambda cfg,shift_pressed: cfg.toggle_sharpen_mode(),
|
||||
'n' : lambda cfg,shift_pressed: cfg.toggle_sharpen_mode_multi(shift_pressed),
|
||||
'9' : lambda cfg,shift_pressed: cfg.add_pre_sharpen_power(1),
|
||||
'8' : lambda cfg,shift_pressed: cfg.add_pre_sharpen_power(-1),
|
||||
'(' : lambda cfg,shift_pressed: cfg.add_morph_power(1),
|
||||
'*' : lambda cfg,shift_pressed: cfg.add_morph_power(-1),
|
||||
'b' : lambda cfg,shift_pressed: cfg.toggle_two_pass(),
|
||||
'7' : lambda cfg,shift_pressed: cfg.toggle_debug_mode(),
|
||||
}
|
||||
self.masked_keys = list(self.masked_keys_funcs.keys())
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ def MergeMaskedFace (predictor_func, predictor_input_shape,
|
|||
face_enhancer_func,
|
||||
xseg_256_extract_func,
|
||||
cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks, dfl_img):
|
||||
|
||||
|
||||
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
||||
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
|
||||
|
||||
|
@ -60,13 +60,36 @@ def MergeMaskedFace (predictor_func, predictor_input_shape,
|
|||
|
||||
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
|
||||
dst_face_mask_a_0 = np.clip(dst_face_mask_a_0, 0, 1)
|
||||
|
||||
|
||||
if cfg.pre_sharpen_mode > 0 and cfg.pre_sharpen_power != 0:
|
||||
if cfg.pre_sharpen_mode==1:
|
||||
dst_face_bgr = imagelib.gaussian_sharpen(dst_face_bgr, amount=cfg.pre_sharpen_power)
|
||||
elif cfg.pre_sharpen_mode==2:
|
||||
dst_face_bgr = imagelib.unsharpen_mask(dst_face_bgr, amount=cfg.pre_sharpen_power)
|
||||
|
||||
dst_face_bgr = np.clip(dst_face_bgr, 0, 1, out=dst_face_bgr)
|
||||
|
||||
predictor_input_bgr = cv2.resize (dst_face_bgr, (input_size,input_size) )
|
||||
|
||||
predicted = predictor_func (predictor_input_bgr)
|
||||
|
||||
predicted = predictor_func (predictor_input_bgr, func_morph_factor = cfg.morph_power/100.0) if cfg.is_morphable else predictor_func (predictor_input_bgr)
|
||||
|
||||
|
||||
prd_face_bgr = np.clip (predicted[0], 0, 1.0)
|
||||
prd_face_mask_a_0 = np.clip (predicted[1], 0, 1.0)
|
||||
prd_face_dst_mask_a_0 = np.clip (predicted[2], 0, 1.0)
|
||||
|
||||
|
||||
|
||||
if cfg.two_pass:
|
||||
predicted_2 = predictor_func (prd_face_bgr, func_morph_factor = 1) if cfg.is_morphable else predictor_func (prd_face_bgr)
|
||||
prd_face_bgr = np.clip (predicted_2[0], 0, 1.0)
|
||||
prd_face_mask_a_0 = np.clip (predicted_2[1], 0, 1.0)
|
||||
prd_face_dst_mask_a_0 = np.clip (predicted_2[2], 0, 1.0)
|
||||
|
||||
if cfg.debug_mode:
|
||||
prd_face_bgr_unchanged = prd_face_bgr.copy()
|
||||
|
||||
if cfg.super_resolution_power != 0:
|
||||
prd_face_bgr_enhanced = face_enhancer_func(prd_face_bgr, is_tanh=True, preserve_size=False)
|
||||
|
@ -333,6 +356,15 @@ def MergeMaskedFace (predictor_func, predictor_input_shape,
|
|||
if out_img is None:
|
||||
out_img = img_bgr.copy()
|
||||
|
||||
|
||||
if 'raw' not in cfg.mode and cfg.debug_mode:
|
||||
ph, pw = predictor_input_bgr.shape[:2]
|
||||
oh, ow = out_img.shape[:2]
|
||||
out_img[oh-ph:,ow-pw:] = predictor_input_bgr
|
||||
ph, pw = prd_face_bgr_unchanged.shape[:2]
|
||||
out_img[oh-ph:,0:pw] = prd_face_bgr_unchanged
|
||||
|
||||
|
||||
return out_img, out_merging_mask_a
|
||||
|
||||
|
||||
|
|
|
@ -21,7 +21,7 @@ class MergerConfig(object):
|
|||
):
|
||||
self.type = type
|
||||
|
||||
self.sharpen_dict = {0:"None", 1:'box', 2:'gaussian'}
|
||||
self.sharpen_dict = {0:"None", 1:'box', 2:'gaussian', 3:'unsharpen'}
|
||||
|
||||
#default changeable params
|
||||
self.sharpen_mode = sharpen_mode
|
||||
|
@ -97,6 +97,9 @@ mask_mode_dict = {0:'full',
|
|||
ctm_dict = { 0: "None", 1:"rct", 2:"lct", 3:"mkl", 4:"mkl-m", 5:"idt", 6:"idt-m", 7:"sot-m", 8:"mix-m" }
|
||||
ctm_str_dict = {None:0, "rct":1, "lct":2, "mkl":3, "mkl-m":4, "idt":5, "idt-m":6, "sot-m":7, "mix-m":8 }
|
||||
|
||||
pre_sharpen_dict = {0:"None", 1:'gaussian'}, # 2:'unsharpen_mask'}
|
||||
|
||||
|
||||
class MergerConfigMasked(MergerConfig):
|
||||
|
||||
def __init__(self, face_type=FaceType.FULL,
|
||||
|
@ -114,6 +117,12 @@ class MergerConfigMasked(MergerConfig):
|
|||
image_denoise_power = 0,
|
||||
bicubic_degrade_power = 0,
|
||||
color_degrade_power = 0,
|
||||
pre_sharpen_power = 0,
|
||||
pre_sharpen_mode=0,
|
||||
two_pass = False,
|
||||
morph_power = 100,
|
||||
is_morphable = False,
|
||||
debug_mode = False,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
|
@ -142,6 +151,12 @@ class MergerConfigMasked(MergerConfig):
|
|||
self.image_denoise_power = image_denoise_power
|
||||
self.bicubic_degrade_power = bicubic_degrade_power
|
||||
self.color_degrade_power = color_degrade_power
|
||||
self.two_pass = two_pass
|
||||
self.pre_sharpen_power = pre_sharpen_power
|
||||
self.pre_sharpen_mode = pre_sharpen_mode
|
||||
self.morph_power = morph_power
|
||||
self.is_morphable = is_morphable
|
||||
self.debug_mode = debug_mode
|
||||
|
||||
def copy(self):
|
||||
return copy.copy(self)
|
||||
|
@ -152,7 +167,25 @@ class MergerConfigMasked(MergerConfig):
|
|||
def toggle_masked_hist_match(self):
|
||||
if self.mode == 'hist-match':
|
||||
self.masked_hist_match = not self.masked_hist_match
|
||||
|
||||
|
||||
def toggle_two_pass(self):
|
||||
self.two_pass = not self.two_pass
|
||||
|
||||
def toggle_debug_mode(self):
|
||||
self.debug_mode = not self.debug_mode
|
||||
|
||||
|
||||
def toggle_sharpen_mode_multi(self, pre_sharpen=False):
|
||||
if pre_sharpen:
|
||||
self.toggle_sharpen_mode_presharpen()
|
||||
else:
|
||||
self.toggle_sharpen_mode()
|
||||
|
||||
def toggle_sharpen_mode_presharpen(self):
|
||||
a = list( pre_sharpen_dict.keys() )
|
||||
self.pre_sharpen_mode = a[ (a.index(self.pre_sharpen_mode)+1) % len(a) ]
|
||||
|
||||
|
||||
def add_hist_match_threshold(self, diff):
|
||||
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
|
||||
self.hist_match_threshold = np.clip ( self.hist_match_threshold+diff , 0, 255)
|
||||
|
@ -187,6 +220,13 @@ class MergerConfigMasked(MergerConfig):
|
|||
|
||||
def add_bicubic_degrade_power(self, diff):
|
||||
self.bicubic_degrade_power = np.clip ( self.bicubic_degrade_power+diff, 0, 100)
|
||||
|
||||
def add_pre_sharpen_power(self, diff):
|
||||
self.pre_sharpen_power = np.clip ( self.pre_sharpen_power+diff, 0, 200)
|
||||
|
||||
def add_morph_power(self, diff):
|
||||
if self.is_morphable:
|
||||
self.morph_power = np.clip ( self.morph_power+diff , 0, 100)
|
||||
|
||||
def ask_settings(self):
|
||||
s = """Choose mode: \n"""
|
||||
|
@ -214,6 +254,13 @@ class MergerConfigMasked(MergerConfig):
|
|||
self.erode_mask_modifier = np.clip ( io.input_int ("Choose erode mask modifier", 0, add_info="-400..400"), -400, 400)
|
||||
self.blur_mask_modifier = np.clip ( io.input_int ("Choose blur mask modifier", 0, add_info="0..400"), 0, 400)
|
||||
self.motion_blur_power = np.clip ( io.input_int ("Choose motion blur power", 0, add_info="0..100"), 0, 100)
|
||||
|
||||
self.two_pass = io.input_bool("Use two pass mode?", False, help_message="Can enhance results by feeding network output again to network.")
|
||||
self.pre_sharpen_power = np.clip (io.input_int ("Choose pre_sharpen power", 0, help_message="Can enhance results by pre sharping before feeding it to the network.", add_info="0..100" ), 0, 200)
|
||||
|
||||
if self.is_morphable:
|
||||
self.morph_power = np.clip (io.input_int ("Choose morph_power for moprhable models", 100, add_info="0..100" ), 0, 100)
|
||||
|
||||
|
||||
self.output_face_scale = np.clip (io.input_int ("Choose output face scale modifier", 0, add_info="-50..50" ), -50, 50)
|
||||
|
||||
|
@ -249,7 +296,13 @@ class MergerConfigMasked(MergerConfig):
|
|||
self.super_resolution_power == other.super_resolution_power and \
|
||||
self.image_denoise_power == other.image_denoise_power and \
|
||||
self.bicubic_degrade_power == other.bicubic_degrade_power and \
|
||||
self.color_degrade_power == other.color_degrade_power
|
||||
self.color_degrade_power == other.color_degrade_power and \
|
||||
self.pre_sharpen_power == other.pre_sharpen_power and \
|
||||
self.pre_sharpen_mode == other.pre_sharpen_mode and \
|
||||
self.two_pass == other.two_pass and \
|
||||
self.morph_power == other.morph_power and \
|
||||
self.is_morphable == other.is_morphable and \
|
||||
self.debug_mode == other.debug_mode
|
||||
|
||||
return False
|
||||
|
||||
|
@ -284,7 +337,14 @@ class MergerConfigMasked(MergerConfig):
|
|||
r += (f"""image_denoise_power: {self.image_denoise_power}\n"""
|
||||
f"""bicubic_degrade_power: {self.bicubic_degrade_power}\n"""
|
||||
f"""color_degrade_power: {self.color_degrade_power}\n""")
|
||||
|
||||
|
||||
r += f"""pre_sharpen_power: {self.pre_sharpen_power}\n"""
|
||||
r += f"""pre_sharpen_mode: {pre_sharpen_dict[self.pre_sharpen_mode]}\n"""
|
||||
r += f"""two_pass: {self.two_pass}\n"""
|
||||
r += f"""morph_power: {self.morph_power}\n"""
|
||||
#r += f"""is_morphable: {self.is_morphable}\n"""
|
||||
r += f"""debug_mode: {self.debug_mode}\n"""
|
||||
|
||||
r += "================"
|
||||
|
||||
return r
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 260 KiB After Width: | Height: | Size: 323 KiB |
Binary file not shown.
|
@ -1,5 +1,6 @@
|
|||
import colorsys
|
||||
import inspect
|
||||
from io import FileIO
|
||||
import json
|
||||
import multiprocessing
|
||||
import operator
|
||||
|
@ -10,6 +11,9 @@ import tempfile
|
|||
import time
|
||||
import datetime
|
||||
from pathlib import Path
|
||||
import yaml
|
||||
from jsonschema import validate, ValidationError
|
||||
import models
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
@ -35,6 +39,8 @@ class ModelBase(object):
|
|||
cpu_only=False,
|
||||
debug=False,
|
||||
force_model_class_name=None,
|
||||
config_training_file=None,
|
||||
auto_gen_config=False,
|
||||
silent_start=False,
|
||||
**kwargs):
|
||||
self.is_training = is_training
|
||||
|
@ -44,6 +50,8 @@ class ModelBase(object):
|
|||
self.training_data_dst_path = training_data_dst_path
|
||||
self.pretraining_data_path = pretraining_data_path
|
||||
self.pretrained_model_path = pretrained_model_path
|
||||
self.config_training_file = config_training_file
|
||||
self.auto_gen_config = auto_gen_config
|
||||
self.no_preview = no_preview
|
||||
self.debug = debug
|
||||
|
||||
|
@ -141,13 +149,51 @@ class ModelBase(object):
|
|||
self.choosed_gpu_indexes = None
|
||||
|
||||
model_data = {}
|
||||
# True if yaml conf file exists
|
||||
self.config_file_exists = False
|
||||
# True if user chooses to read options external or internal conf file
|
||||
self.read_from_conf = False
|
||||
config_error = False
|
||||
#check if config_training_file mode is enabled
|
||||
if config_training_file is not None:
|
||||
self.config_file_path = Path(config_training_file)
|
||||
# Creates folder if folder doesn't exist
|
||||
if not self.config_file_path.exists():
|
||||
os.makedirs(self.config_file_path, exist_ok=True)
|
||||
# Ask if user wants to read options from external or internal conf file only if external conf file exists
|
||||
# or auto_gen_config is true
|
||||
if Path(self.get_strpath_configuration_path()).exists() or self.auto_gen_config:
|
||||
self.read_from_conf = io.input_bool(
|
||||
f'Do you want to read training options from {"external" if self.auto_gen_config else "internal"} file?',
|
||||
True,
|
||||
'Read options from configuration file instead of asking one by one each option'
|
||||
)
|
||||
|
||||
# If user decides to read from external or internal conf file
|
||||
if self.read_from_conf:
|
||||
# Try to read dictionary from external of internal yaml file according
|
||||
# to the value of auto_gen_config
|
||||
self.options = self.read_from_config_file(auto_gen=self.auto_gen_config)
|
||||
# If options dict is empty options will be loaded from dat file
|
||||
if self.options is None:
|
||||
io.log_info(f"Config file validation error, check your config")
|
||||
config_error = True
|
||||
elif not self.options.keys():
|
||||
io.log_info(f"Configuration file doesn't exist. A standard configuration file will be created.")
|
||||
else:
|
||||
self.config_file_exists = True
|
||||
else:
|
||||
io.log_info(f"Configuration file doesn't exist. A standard configuration file will be created.")
|
||||
|
||||
self.model_data_path = Path( self.get_strpath_storage_for_file('data.dat') )
|
||||
if self.model_data_path.exists():
|
||||
io.log_info (f"Loading {self.model_name} model...")
|
||||
model_data = pickle.loads ( self.model_data_path.read_bytes() )
|
||||
self.iter = model_data.get('iter',0)
|
||||
if self.iter != 0:
|
||||
self.options = model_data['options']
|
||||
# read options from the .dat file only if the user chooses not to read options from the yaml file
|
||||
if not self.config_file_exists:
|
||||
self.options = model_data['options']
|
||||
self.loss_history = model_data.get('loss_history', [])
|
||||
self.sample_for_preview = model_data.get('sample_for_preview', None)
|
||||
self.choosed_gpu_indexes = model_data.get('choosed_gpu_indexes', None)
|
||||
|
@ -183,6 +229,11 @@ class ModelBase(object):
|
|||
if self.is_first_run():
|
||||
# save as default options only for first run model initialize
|
||||
self.default_options_path.write_bytes( pickle.dumps (self.options) )
|
||||
|
||||
# save config file
|
||||
if self.config_training_file is not None and not self.config_file_exists and not config_error:
|
||||
self.save_config_file(self.auto_gen_config)
|
||||
|
||||
self.session_name = self.options.get('session_name', "")
|
||||
self.autobackup_hour = self.options.get('autobackup_hour', 0)
|
||||
self.maximum_n_backups = self.options.get('maximum_n_backups', 24)
|
||||
|
@ -364,7 +415,7 @@ class ModelBase(object):
|
|||
return ( ('loss_src', 0), ('loss_dst', 0) )
|
||||
|
||||
#overridable
|
||||
def onGetPreview(self, sample, for_history=False, filenames=None):
|
||||
def onGetPreview(self, sample, for_history=False):
|
||||
#you can return multiple previews
|
||||
#return [ ('preview_name',preview_rgb), ... ]
|
||||
return []
|
||||
|
@ -382,6 +433,10 @@ class ModelBase(object):
|
|||
#return predictor_func, predictor_input_shape, MergerConfig() for the model
|
||||
raise NotImplementedError
|
||||
|
||||
#overridable
|
||||
def get_config_schema_path(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_pretraining_data_path(self):
|
||||
return self.pretraining_data_path
|
||||
|
||||
|
@ -392,7 +447,7 @@ class ModelBase(object):
|
|||
return self.target_iter != 0 and self.iter >= self.target_iter
|
||||
|
||||
def get_previews(self):
|
||||
return self.onGetPreview ( self.last_sample, filenames=self.last_sample_filenames)
|
||||
return self.onGetPreview ( self.last_sample )
|
||||
|
||||
def get_static_previews(self):
|
||||
return self.onGetPreview (self.sample_for_preview)
|
||||
|
@ -429,6 +484,60 @@ class ModelBase(object):
|
|||
self.autobackup_start_time += self.autobackup_hour*3600
|
||||
self.create_backup()
|
||||
|
||||
def read_from_config_file(self, auto_gen=False):
|
||||
"""
|
||||
Read yaml config file and saves it into a dictionary
|
||||
|
||||
Args:
|
||||
auto_gen (bool, optional): True if you want that a yaml file is readed from model folder. Defaults to False.
|
||||
|
||||
Returns:
|
||||
[dict]: Returns the options dictionary if everything is alright otherwise an empty dictionary.
|
||||
"""
|
||||
fun = self.get_strpath_configuration_path if not auto_gen else self.get_model_conf_path
|
||||
|
||||
try:
|
||||
with open(fun(), 'r') as file, open(self.get_config_schema_path(), 'r') as schema:
|
||||
data = yaml.safe_load(file)
|
||||
validate(data, yaml.safe_load(schema))
|
||||
except FileNotFoundError:
|
||||
return {}
|
||||
except ValidationError as ve:
|
||||
io.log_err(f"{ve}")
|
||||
return None
|
||||
|
||||
for key, value in data.items():
|
||||
if isinstance(value, bool):
|
||||
continue
|
||||
if isinstance(value, int):
|
||||
data[key] = np.int32(value)
|
||||
elif isinstance(value, float):
|
||||
data[key] = np.float64(value)
|
||||
|
||||
return data
|
||||
|
||||
def save_config_file(self, auto_gen=False):
|
||||
"""
|
||||
Saves options dictionary in a yaml file.
|
||||
|
||||
Args:
|
||||
auto_gen ([bool], optional): True if you want that a yaml file is generated inside model folder for each model. Defaults to None.
|
||||
"""
|
||||
saving_dict = {}
|
||||
for key, value in self.options.items():
|
||||
if isinstance(value, np.int32) or isinstance(value, np.float64):
|
||||
saving_dict[key] = value.item()
|
||||
else:
|
||||
saving_dict[key] = value
|
||||
|
||||
fun = self.get_strpath_configuration_path if not auto_gen else self.get_model_conf_path
|
||||
|
||||
try:
|
||||
with open(fun(), 'w') as file:
|
||||
yaml.dump(saving_dict, file, sort_keys=False)
|
||||
except OSError as exception:
|
||||
io.log_info('Impossible to write YAML configuration file -> ', exception)
|
||||
|
||||
def create_backup(self):
|
||||
io.log_info ("Creating backup...", end='\r')
|
||||
|
||||
|
@ -476,19 +585,12 @@ class ModelBase(object):
|
|||
|
||||
def generate_next_samples(self):
|
||||
sample = []
|
||||
sample_filenames = []
|
||||
for generator in self.generator_list:
|
||||
if generator.is_initialized():
|
||||
batch = generator.generate_next()
|
||||
if type(batch) is tuple:
|
||||
sample.append ( batch[0] )
|
||||
sample_filenames.append( batch[1] )
|
||||
else:
|
||||
sample.append ( batch )
|
||||
sample.append ( generator.generate_next() )
|
||||
else:
|
||||
sample.append ( [] )
|
||||
self.last_sample = sample
|
||||
self.last_sample_filenames = sample_filenames
|
||||
return sample
|
||||
|
||||
#overridable
|
||||
|
@ -568,9 +670,15 @@ class ModelBase(object):
|
|||
def get_strpath_storage_for_file(self, filename):
|
||||
return str( self.saved_models_path / ( self.get_model_name() + '_' + filename) )
|
||||
|
||||
def get_strpath_configuration_path(self):
|
||||
return str(self.config_file_path / 'configuration_file.yaml')
|
||||
|
||||
def get_summary_path(self):
|
||||
return self.get_strpath_storage_for_file('summary.txt')
|
||||
|
||||
def get_model_conf_path(self):
|
||||
return self.get_strpath_storage_for_file('configuration_file.yaml')
|
||||
|
||||
def get_summary_text(self):
|
||||
visible_options = self.options.copy()
|
||||
visible_options.update(self.options_show_override)
|
||||
|
|
|
@ -10,16 +10,16 @@ from facelib import FaceType
|
|||
from models import ModelBase
|
||||
from samplelib import *
|
||||
from core.cv2ex import *
|
||||
from utils.label_face import label_face_filename
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
class AMPModel(ModelBase):
|
||||
|
||||
#override
|
||||
def on_initialize_options(self):
|
||||
default_retraining_samples = self.options['retraining_samples'] = self.load_or_def_option('retraining_samples', False)
|
||||
# default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||
default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 224)
|
||||
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
|
||||
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'f')
|
||||
default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True)
|
||||
|
||||
default_ae_dims = self.options['ae_dims'] = self.load_or_def_option('ae_dims', 256)
|
||||
|
@ -28,12 +28,14 @@ class AMPModel(ModelBase):
|
|||
default_e_dims = self.options['e_dims'] = self.load_or_def_option('e_dims', 64)
|
||||
default_d_dims = self.options['d_dims'] = self.options.get('d_dims', None)
|
||||
default_d_mask_dims = self.options['d_mask_dims'] = self.options.get('d_mask_dims', None)
|
||||
default_morph_factor = self.options['morph_factor'] = self.options.get('morph_factor', 0.5)
|
||||
default_eyes_mouth_prio = self.options['eyes_mouth_prio'] = self.load_or_def_option('eyes_mouth_prio', False)
|
||||
default_morph_factor = self.options['morph_factor'] = self.load_or_def_option('morph_factor', 0.5)
|
||||
default_masked_training = self.options['masked_training'] = self.load_or_def_option('masked_training', True)
|
||||
default_eyes_prio = self.options['eyes_prio'] = self.load_or_def_option('eyes_prio', False)
|
||||
default_mouth_prio = self.options['mouth_prio'] = self.load_or_def_option('mouth_prio', False)
|
||||
default_uniform_yaw = self.options['uniform_yaw'] = self.load_or_def_option('uniform_yaw', False)
|
||||
|
||||
# Uncomment it just if you want to impelement other loss functions
|
||||
#default_loss_function = self.options['loss_function'] = self.load_or_def_option('loss_function', 'SSIM')
|
||||
default_loss_function = self.options['loss_function'] = self.load_or_def_option('loss_function', 'SSIM')
|
||||
|
||||
default_blur_out_mask = self.options['blur_out_mask'] = self.load_or_def_option('blur_out_mask', False)
|
||||
|
||||
|
@ -42,35 +44,42 @@ class AMPModel(ModelBase):
|
|||
default_lr_dropout = self.options['lr_dropout'] = self.load_or_def_option('lr_dropout', 'n')
|
||||
|
||||
default_random_warp = self.options['random_warp'] = self.load_or_def_option('random_warp', True)
|
||||
default_random_hsv_power = self.options['random_hsv_power'] = self.load_or_def_option('random_hsv_power', 0.0)
|
||||
default_random_downsample = self.options['random_downsample'] = self.load_or_def_option('random_downsample', False)
|
||||
default_random_noise = self.options['random_noise'] = self.load_or_def_option('random_noise', False)
|
||||
default_random_blur = self.options['random_blur'] = self.load_or_def_option('random_blur', False)
|
||||
default_random_jpeg = self.options['random_jpeg'] = self.load_or_def_option('random_jpeg', False)
|
||||
|
||||
# Uncomment it just if you want to impelement other loss functions
|
||||
#default_background_power = self.options['background_power'] = self.load_or_def_option('background_power', 0.0)
|
||||
default_background_power = self.options['background_power'] = self.load_or_def_option('background_power', 0.0)
|
||||
default_ct_mode = self.options['ct_mode'] = self.load_or_def_option('ct_mode', 'none')
|
||||
default_random_color = self.options['random_color'] = self.load_or_def_option('random_color', False)
|
||||
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
|
||||
default_use_fp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||
default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||
|
||||
ask_override = self.ask_override()
|
||||
ask_override = False if self.read_from_conf else self.ask_override()
|
||||
if self.is_first_run() or ask_override:
|
||||
self.ask_autobackup_hour()
|
||||
self.ask_write_preview_history()
|
||||
self.ask_target_iter()
|
||||
self.ask_retraining_samples()
|
||||
self.ask_random_src_flip()
|
||||
self.ask_random_dst_flip()
|
||||
self.ask_batch_size(8)
|
||||
# self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.')
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.ask_autobackup_hour()
|
||||
self.ask_session_name()
|
||||
self.ask_maximum_n_backups()
|
||||
self.ask_write_preview_history()
|
||||
self.ask_target_iter()
|
||||
self.ask_retraining_samples()
|
||||
self.ask_random_src_flip()
|
||||
self.ask_random_dst_flip()
|
||||
self.ask_batch_size(8)
|
||||
self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.')
|
||||
|
||||
|
||||
|
||||
if self.is_first_run():
|
||||
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 32 .")
|
||||
resolution = np.clip ( (resolution // 32) * 32, 64, 640)
|
||||
self.options['resolution'] = resolution
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['f','wf','head'], help_message="whole face / head").lower()
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 32 .")
|
||||
resolution = np.clip ( (resolution // 32) * 32, 64, 640)
|
||||
self.options['resolution'] = resolution
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head', 'custom'], help_message="Half / mid face / full face / whole face / head / custom. Half face has better resolution, but covers less area of cheeks. Mid face is 30% wider than half face. 'Whole face' covers full area of face include forehead. 'head' covers full head, but requires XSeg for src and dst faceset.").lower()
|
||||
|
||||
|
||||
|
||||
default_d_dims = self.options['d_dims'] = self.load_or_def_option('d_dims', 64)
|
||||
|
@ -80,59 +89,83 @@ class AMPModel(ModelBase):
|
|||
default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims)
|
||||
|
||||
if self.is_first_run():
|
||||
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
|
||||
self.options['inter_dims'] = np.clip ( io.input_int("Inter dimensions", default_inter_dims, add_info="32-2048", help_message="Should be equal or more than AutoEncoder dimensions. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 2048 )
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
|
||||
self.options['inter_dims'] = np.clip ( io.input_int("Inter dimensions", default_inter_dims, add_info="32-2048", help_message="Should be equal or more than AutoEncoder dimensions. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 2048 )
|
||||
|
||||
e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
|
||||
self.options['e_dims'] = e_dims + e_dims % 2
|
||||
e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
|
||||
self.options['e_dims'] = e_dims + e_dims % 2
|
||||
|
||||
d_dims = np.clip ( io.input_int("Decoder dimensions", default_d_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
|
||||
self.options['d_dims'] = d_dims + d_dims % 2
|
||||
d_dims = np.clip ( io.input_int("Decoder dimensions", default_d_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
|
||||
self.options['d_dims'] = d_dims + d_dims % 2
|
||||
|
||||
d_mask_dims = np.clip ( io.input_int("Decoder mask dimensions", default_d_mask_dims, add_info="16-256", help_message="Typical mask dimensions = decoder dimensions / 3. If you manually cut out obstacles from the dst mask, you can increase this parameter to achieve better quality." ), 16, 256 )
|
||||
self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2
|
||||
|
||||
morph_factor = np.clip ( io.input_number ("Morph factor.", default_morph_factor, add_info="0.1 .. 0.5", help_message="Typical fine value is 0.5"), 0.1, 0.5 )
|
||||
self.options['morph_factor'] = morph_factor
|
||||
d_mask_dims = np.clip ( io.input_int("Decoder mask dimensions", default_d_mask_dims, add_info="16-256", help_message="Typical mask dimensions = decoder dimensions / 3. If you manually cut out obstacles from the dst mask, you can increase this parameter to achieve better quality." ), 16, 256 )
|
||||
self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2
|
||||
|
||||
if self.is_first_run() or ask_override:
|
||||
self.options['eyes_mouth_prio'] = io.input_bool ("Eyes and mouth priority", default_eyes_mouth_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction. Also makes the detail of the teeth higher.')
|
||||
self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
|
||||
morph_factor = np.clip ( io.input_number ("Morph factor.", default_morph_factor, add_info="0.1 .. 0.5", help_message="Typical fine value is 0.5"), 0.1, 0.5 )
|
||||
self.options['morph_factor'] = morph_factor
|
||||
|
||||
self.options['blur_out_mask'] = io.input_bool ("Blur out mask", default_blur_out_mask, help_message='Blurs nearby area outside of applied face mask of training samples. The result is the background near the face is smoothed and less noticeable on swapped face. The exact xseg mask in src and dst faceset is required.')
|
||||
|
||||
self.options['lr_dropout'] = io.input_str (f"Use learning rate dropout", default_lr_dropout, ['n','y','cpu'], help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. Enabled it before `disable random warp` and before GAN. \nn - disabled.\ny - enabled\ncpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration.")
|
||||
if self.options['face_type'] == 'wf' or self.options['face_type'] == 'head':
|
||||
self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' or 'head' type. Masked training clips training area to full_face mask or XSeg mask, thus network will train the faces properly.")
|
||||
|
||||
self.options['eyes_prio'] = io.input_bool ("Eyes priority", default_eyes_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction ( especially on HD architectures ) by forcing the neural network to train eyes with higher priority. before/after https://i.imgur.com/YQHOuSR.jpg ')
|
||||
self.options['mouth_prio'] = io.input_bool ("Mouth priority", default_mouth_prio, help_message='Helps to fix mouth problems during training by forcing the neural network to train mouth with higher priority similar to eyes ')
|
||||
|
||||
self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
|
||||
if self.options['masked_training']:
|
||||
self.options['blur_out_mask'] = io.input_bool ("Blur out mask", default_blur_out_mask, help_message='Blurs nearby area outside of applied face mask of training samples. The result is the background near the face is smoothed and less noticeable on swapped face. The exact xseg mask in src and dst faceset is required.')
|
||||
|
||||
self.options['loss_function'] = io.input_str(f"Loss function", default_loss_function, ['SSIM', 'MS-SSIM', 'MS-SSIM+L1'], help_message="Change loss function used for image quality assessment.")
|
||||
self.options['lr_dropout'] = io.input_str (f"Use learning rate dropout", default_lr_dropout, ['n','y','cpu'], help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. Enabled it before `disable random warp` and before GAN. \nn - disabled.\ny - enabled\ncpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration.")
|
||||
|
||||
default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0)
|
||||
default_gan_version = self.options['gan_version'] = self.load_or_def_option('gan_version', 2)
|
||||
default_gan_patch_size = self.options['gan_patch_size'] = self.load_or_def_option('gan_patch_size', self.options['resolution'] // 8)
|
||||
default_gan_dims = self.options['gan_dims'] = self.load_or_def_option('gan_dims', 16)
|
||||
|
||||
default_gan_smoothing = self.options['gan_smoothing'] = self.load_or_def_option('gan_smoothing', 0.1)
|
||||
default_gan_noise = self.options['gan_noise'] = self.load_or_def_option('gan_noise', 0.0)
|
||||
|
||||
if self.is_first_run() or ask_override:
|
||||
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
|
||||
|
||||
self.options['adabelief'] = io.input_bool ("Use AdaBelief optimizer?", default_adabelief, help_message="Use AdaBelief optimizer. It requires more VRAM, but the accuracy and the generalization of the model is higher.")
|
||||
self.options['adabelief'] = io.input_bool ("Use AdaBelief optimizer?", default_adabelief, help_message="Use AdaBelief optimizer. It requires more VRAM, but the accuracy and the generalization of the model is higher.")
|
||||
|
||||
self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.")
|
||||
self.options['random_downsample'] = io.input_bool("Enable random downsample of samples", default_random_downsample, help_message="")
|
||||
self.options['random_noise'] = io.input_bool("Enable random noise added to samples", default_random_noise, help_message="")
|
||||
self.options['random_blur'] = io.input_bool("Enable random blur of samples", default_random_blur, help_message="")
|
||||
self.options['random_jpeg'] = io.input_bool("Enable random jpeg compression of samples", default_random_jpeg, help_message="")
|
||||
self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.")
|
||||
self.options['random_downsample'] = io.input_bool("Enable random downsample of samples", default_random_downsample, help_message="")
|
||||
self.options['random_noise'] = io.input_bool("Enable random noise added to samples", default_random_noise, help_message="")
|
||||
self.options['random_blur'] = io.input_bool("Enable random blur of samples", default_random_blur, help_message="")
|
||||
self.options['random_jpeg'] = io.input_bool("Enable random jpeg compression of samples", default_random_jpeg, help_message="")
|
||||
|
||||
self.options['random_hsv_power'] = np.clip ( io.input_number ("Random hue/saturation/light intensity", default_random_hsv_power, add_info="0.0 .. 0.3", help_message="Random hue/saturation/light intensity applied to the src face set only at the input of the neural network. Stabilizes color perturbations during face swapping. Reduces the quality of the color transfer by selecting the closest one in the src faceset. Thus the src faceset must be diverse enough. Typical fine value is 0.05"), 0.0, 0.3 )
|
||||
|
||||
self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 5.0", help_message="Forces the neural network to learn small details of the face. Enable it only when the face is trained enough with random_warp(off), and don't disable. The higher the value, the higher the chances of artifacts. Typical fine value is 0.1"), 0.0, 5.0 )
|
||||
self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 5.0", help_message="Forces the neural network to learn small details of the face. Enable it only when the face is trained enough with random_warp(off), and don't disable. The higher the value, the higher the chances of artifacts. Typical fine value is 0.1"), 0.0, 5.0 )
|
||||
|
||||
if self.options['gan_power'] != 0.0:
|
||||
gan_patch_size = np.clip ( io.input_int("GAN patch size", default_gan_patch_size, add_info="3-640", help_message="The higher patch size, the higher the quality, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is resolution / 8." ), 3, 640 )
|
||||
self.options['gan_patch_size'] = gan_patch_size
|
||||
|
||||
gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-512", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 512 )
|
||||
self.options['gan_dims'] = gan_dims
|
||||
if self.options['gan_power'] != 0.0:
|
||||
self.options['gan_version'] = np.clip (io.input_int("GAN version", default_gan_version, add_info="2 or 3", help_message="Choose GAN version (v2: 7/16/2020, v3: 1/3/2021):"), 2, 3)
|
||||
|
||||
#self.options['background_power'] = np.clip ( io.input_number("Background power", default_background_power, add_info="0.0..1.0", help_message="Learn the area outside of the mask. Helps smooth out area near the mask boundaries. Can be used at any time"), 0.0, 1.0 )
|
||||
if self.options['gan_version'] == 3:
|
||||
gan_patch_size = np.clip ( io.input_int("GAN patch size", default_gan_patch_size, add_info="3-640", help_message="The higher patch size, the higher the quality, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is resolution / 8." ), 3, 640 )
|
||||
self.options['gan_patch_size'] = gan_patch_size
|
||||
|
||||
self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot', 'fs-aug'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best.")
|
||||
self.options['random_color'] = io.input_bool ("Random color", default_random_color, help_message="Samples are randomly rotated around the L axis in LAB colorspace, helps generalize training")
|
||||
gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-64", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 64 )
|
||||
self.options['gan_dims'] = gan_dims
|
||||
|
||||
self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
|
||||
self.options['gan_smoothing'] = np.clip ( io.input_number("GAN label smoothing", default_gan_smoothing, add_info="0 - 0.5", help_message="Uses soft labels with values slightly off from 0/1 for GAN, has a regularizing effect"), 0, 0.5)
|
||||
self.options['gan_noise'] = np.clip ( io.input_number("GAN noisy labels", default_gan_noise, add_info="0 - 0.5", help_message="Marks some images with the wrong label, helps prevent collapse"), 0, 0.5)
|
||||
|
||||
|
||||
self.options['background_power'] = np.clip ( io.input_number("Background power", default_background_power, add_info="0.0..1.0", help_message="Learn the area outside of the mask. Helps smooth out area near the mask boundaries. Can be used at any time"), 0.0, 1.0 )
|
||||
|
||||
|
||||
self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot', 'fs-aug'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best.")
|
||||
self.options['random_color'] = io.input_bool ("Random color", default_random_color, help_message="Samples are randomly rotated around the L axis in LAB colorspace, helps generalize training")
|
||||
|
||||
self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
|
||||
|
||||
self.gan_model_changed = (default_gan_patch_size != self.options['gan_patch_size']) or (default_gan_dims != self.options['gan_dims'])
|
||||
|
||||
|
@ -152,16 +185,26 @@ class AMPModel(ModelBase):
|
|||
inter_res = self.inter_res = resolution // 32
|
||||
d_dims = self.options['d_dims']
|
||||
d_mask_dims = self.options['d_mask_dims']
|
||||
face_type = self.face_type = {'f' : FaceType.FULL,
|
||||
'wf' : FaceType.WHOLE_FACE,
|
||||
'head' : FaceType.HEAD}[ self.options['face_type'] ]
|
||||
self.face_type = {'h' : FaceType.HALF,
|
||||
'mf' : FaceType.MID_FULL,
|
||||
'f' : FaceType.FULL,
|
||||
'wf' : FaceType.WHOLE_FACE,
|
||||
'custom' : FaceType.CUSTOM,
|
||||
'head' : FaceType.HEAD}[ self.options['face_type'] ]
|
||||
morph_factor = self.options['morph_factor']
|
||||
gan_power = self.gan_power = self.options['gan_power']
|
||||
random_warp = self.options['random_warp']
|
||||
random_hsv_power = self.options['random_hsv_power']
|
||||
|
||||
eyes_mouth_prio = self.options['eyes_mouth_prio']
|
||||
|
||||
blur_out_mask = self.options['blur_out_mask']
|
||||
if 'eyes_mouth_prio' in self.options:
|
||||
self.options.pop('eyes_mouth_prio')
|
||||
|
||||
bg_factor = self.options['background_power']
|
||||
|
||||
eyes_prio = self.options['eyes_prio']
|
||||
mouth_prio = self.options['mouth_prio']
|
||||
masked_training = self.options['masked_training']
|
||||
blur_out_mask = self.options['blur_out_mask'] if masked_training else False
|
||||
|
||||
ct_mode = self.options['ct_mode']
|
||||
if ct_mode == 'none':
|
||||
|
@ -330,6 +373,14 @@ class AMPModel(ModelBase):
|
|||
[self.decoder , 'decoder.npy'] ]
|
||||
|
||||
if self.is_training:
|
||||
if gan_power != 0:
|
||||
if self.options['gan_version'] == 2:
|
||||
self.GAN = nn.UNetPatchDiscriminatorV2(patch_size=resolution//16, in_ch=input_ch, name="D_src", use_fp16=self.options['use_fp16'])
|
||||
self.model_filename_list += [ [self.GAN, 'D_src_v2.npy'] ]
|
||||
else:
|
||||
self.GAN = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], use_fp16=self.options['use_fp16'], name="D_src")
|
||||
self.model_filename_list += [ [self.GAN, 'GAN.npy'] ]
|
||||
|
||||
# Initialize optimizers
|
||||
clipnorm = 1.0 if self.options['clipgrad'] else 0.0
|
||||
if self.options['lr_dropout'] in ['y','cpu']:
|
||||
|
@ -341,17 +392,19 @@ class AMPModel(ModelBase):
|
|||
self.G_weights = self.encoder.get_weights() + self.decoder.get_weights()
|
||||
|
||||
OptimizerClass = nn.AdaBelief if adabelief else nn.RMSprop
|
||||
|
||||
self.src_dst_opt = OptimizerClass(lr=5e-5, lr_dropout=lr_dropout, lr_cos=lr_cos, clipnorm=clipnorm, name='src_dst_opt')
|
||||
self.src_dst_opt = OptimizerClass(lr=5e-5, lr_dropout=lr_dropout, clipnorm=clipnorm, name='src_dst_opt')
|
||||
self.src_dst_opt.initialize_variables (self.G_weights, vars_on_cpu=optimizer_vars_on_cpu)
|
||||
self.model_filename_list += [ (self.src_dst_opt, 'src_dst_opt.npy') ]
|
||||
|
||||
if gan_power != 0:
|
||||
self.GAN = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], use_fp16=use_fp16, name="GAN")
|
||||
self.GAN_opt = OptimizerClass(lr=5e-5, lr_dropout=lr_dropout, lr_cos=lr_cos, clipnorm=clipnorm, name='GAN_opt')
|
||||
self.GAN_opt.initialize_variables ( self.GAN.get_weights(), vars_on_cpu=optimizer_vars_on_cpu)
|
||||
self.model_filename_list += [ [self.GAN, 'GAN.npy'],
|
||||
[self.GAN_opt, 'GAN_opt.npy'] ]
|
||||
if self.options['gan_version'] == 2:
|
||||
self.GAN_opt = OptimizerClass(lr=5e-5, lr_dropout=lr_dropout, lr_cos=lr_cos, clipnorm=clipnorm, name='D_src_dst_opt')
|
||||
self.GAN_opt.initialize_variables ( self.GAN.get_weights(), vars_on_cpu=optimizer_vars_on_cpu, lr_dropout_on_cpu=self.options['lr_dropout']=='cpu')#+self.D_src_x2.get_weights()
|
||||
self.model_filename_list += [ (self.GAN_opt, 'D_src_v2_opt.npy') ]
|
||||
else:
|
||||
self.GAN_opt = OptimizerClass(lr=5e-5, lr_dropout=lr_dropout, lr_cos=lr_cos, clipnorm=clipnorm, name='GAN_opt')
|
||||
self.GAN_opt.initialize_variables ( self.GAN.get_weights(), vars_on_cpu=optimizer_vars_on_cpu, lr_dropout_on_cpu=self.options['lr_dropout']=='cpu')#+self.D_src_x2.get_weights()
|
||||
self.model_filename_list += [ (self.GAN_opt, 'GAN_opt.npy') ]
|
||||
|
||||
if self.is_training:
|
||||
# Adjust batch size for multiple GPU
|
||||
|
@ -372,6 +425,9 @@ class AMPModel(ModelBase):
|
|||
gpu_G_loss_gradients = []
|
||||
gpu_GAN_loss_gradients = []
|
||||
|
||||
def DLoss(labels,logits):
|
||||
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits), axis=[1,2,3])
|
||||
|
||||
def DLossOnes(logits):
|
||||
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(logits), logits=logits), axis=[1,2,3])
|
||||
|
||||
|
@ -387,10 +443,13 @@ class AMPModel(ModelBase):
|
|||
gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
|
||||
gpu_target_src = self.target_src [batch_slice,:,:,:]
|
||||
gpu_target_dst = self.target_dst [batch_slice,:,:,:]
|
||||
gpu_target_srcm = self.target_srcm[batch_slice,:,:,:]
|
||||
gpu_target_srcm_all = self.target_srcm[batch_slice,:,:,:]
|
||||
gpu_target_srcm_em = self.target_srcm_em[batch_slice,:,:,:]
|
||||
gpu_target_dstm = self.target_dstm[batch_slice,:,:,:]
|
||||
gpu_target_dstm_all = self.target_dstm[batch_slice,:,:,:]
|
||||
gpu_target_dstm_em = self.target_dstm_em[batch_slice,:,:,:]
|
||||
|
||||
gpu_target_srcm_anti = 1-gpu_target_srcm_all
|
||||
gpu_target_dstm_anti = 1-gpu_target_dstm_all
|
||||
|
||||
# process model tensors
|
||||
gpu_src_code = self.encoder (gpu_warped_src)
|
||||
|
@ -421,58 +480,119 @@ class AMPModel(ModelBase):
|
|||
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst), gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
|
||||
gpu_pred_src_dst_list.append(gpu_pred_src_dst), gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
|
||||
|
||||
gpu_target_srcm_anti = 1-gpu_target_srcm
|
||||
gpu_target_dstm_anti = 1-gpu_target_dstm
|
||||
|
||||
gpu_target_srcm_gblur = nn.gaussian_blur(gpu_target_srcm, resolution // 32)
|
||||
gpu_target_dstm_gblur = nn.gaussian_blur(gpu_target_dstm, resolution // 32)
|
||||
|
||||
gpu_target_srcm_blur = tf.clip_by_value(gpu_target_srcm_gblur, 0, 0.5) * 2
|
||||
gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_gblur, 0, 0.5) * 2
|
||||
gpu_target_srcm_anti_blur = 1.0-gpu_target_srcm_blur
|
||||
gpu_target_dstm_anti_blur = 1.0-gpu_target_dstm_blur
|
||||
|
||||
if blur_out_mask:
|
||||
sigma = resolution / 128
|
||||
|
||||
x = nn.gaussian_blur(gpu_target_src*gpu_target_srcm_anti, sigma)
|
||||
y = 1-nn.gaussian_blur(gpu_target_srcm, sigma)
|
||||
y = 1-nn.gaussian_blur(gpu_target_srcm_all, sigma)
|
||||
y = tf.where(tf.equal(y, 0), tf.ones_like(y), y)
|
||||
gpu_target_src = gpu_target_src*gpu_target_srcm + (x/y)*gpu_target_srcm_anti
|
||||
gpu_target_src = gpu_target_src*gpu_target_srcm_all + (x/y)*gpu_target_srcm_anti
|
||||
|
||||
x = nn.gaussian_blur(gpu_target_dst*gpu_target_dstm_anti, sigma)
|
||||
y = 1-nn.gaussian_blur(gpu_target_dstm, sigma)
|
||||
y = 1-nn.gaussian_blur(gpu_target_dstm_all, sigma)
|
||||
y = tf.where(tf.equal(y, 0), tf.ones_like(y), y)
|
||||
gpu_target_dst = gpu_target_dst*gpu_target_dstm + (x/y)*gpu_target_dstm_anti
|
||||
gpu_target_dst = gpu_target_dst*gpu_target_dstm_all + (x/y)*gpu_target_dstm_anti
|
||||
|
||||
gpu_target_src_masked = gpu_target_src*gpu_target_srcm_blur
|
||||
gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur
|
||||
gpu_target_src_anti_masked = gpu_target_src*gpu_target_srcm_anti_blur
|
||||
gpu_target_dst_anti_masked = gpu_target_dst*gpu_target_dstm_anti_blur
|
||||
# unpack masks from one combined mask
|
||||
gpu_target_srcm = tf.clip_by_value (gpu_target_srcm_all, 0, 1)
|
||||
gpu_target_dstm = tf.clip_by_value (gpu_target_dstm_all, 0, 1)
|
||||
gpu_target_srcm_eye_mouth = tf.clip_by_value (gpu_target_srcm_em-1, 0, 1)
|
||||
gpu_target_dstm_eye_mouth = tf.clip_by_value (gpu_target_dstm_em-1, 0, 1)
|
||||
gpu_target_srcm_mouth = tf.clip_by_value (gpu_target_srcm_em-2, 0, 1)
|
||||
gpu_target_dstm_mouth = tf.clip_by_value (gpu_target_dstm_em-2, 0, 1)
|
||||
gpu_target_srcm_eyes = tf.clip_by_value (gpu_target_srcm_eye_mouth-gpu_target_srcm_mouth, 0, 1)
|
||||
gpu_target_dstm_eyes = tf.clip_by_value (gpu_target_dstm_eye_mouth-gpu_target_dstm_mouth, 0, 1)
|
||||
|
||||
|
||||
|
||||
gpu_target_srcm_gblur = nn.gaussian_blur(gpu_target_srcm, resolution // 32)
|
||||
gpu_target_dstm_gblur = nn.gaussian_blur(gpu_target_dstm, resolution // 32)
|
||||
|
||||
|
||||
gpu_target_srcm_blur = tf.clip_by_value(gpu_target_srcm_gblur, 0, 0.5) * 2
|
||||
gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_gblur, 0, 0.5) * 2
|
||||
|
||||
gpu_target_srcm_anti_blur = 1.0-gpu_target_srcm_blur
|
||||
gpu_target_dstm_anti_blur = 1.0-gpu_target_dstm_blur
|
||||
|
||||
gpu_target_src_masked = gpu_target_src*gpu_target_srcm_blur if masked_training else gpu_target_src
|
||||
gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur if masked_training else gpu_target_dst
|
||||
gpu_target_src_anti_masked = gpu_target_src*gpu_target_srcm_anti_blur if masked_training else gpu_pred_src_src
|
||||
gpu_target_dst_anti_masked = gpu_target_dst*gpu_target_dstm_anti_blur if masked_training else gpu_pred_dst_dst
|
||||
|
||||
gpu_pred_src_src_masked = gpu_pred_src_src*gpu_target_srcm_blur
|
||||
gpu_pred_dst_dst_masked = gpu_pred_dst_dst*gpu_target_dstm_blur
|
||||
gpu_pred_src_src_anti_masked = gpu_pred_src_src*gpu_target_srcm_anti_blur
|
||||
gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*gpu_target_dstm_anti_blur
|
||||
|
||||
# Structural loss
|
||||
gpu_src_loss = tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||
gpu_src_loss += tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
|
||||
gpu_dst_loss = tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
|
||||
gpu_dst_loss += tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1])
|
||||
|
||||
# Pixel loss
|
||||
gpu_src_loss += tf.reduce_mean (10*tf.square(gpu_target_src_masked-gpu_pred_src_src_masked), axis=[1,2,3])
|
||||
gpu_dst_loss += tf.reduce_mean (10*tf.square(gpu_target_dst_masked-gpu_pred_dst_dst_masked), axis=[1,2,3])
|
||||
if self.options['loss_function'] == 'MS-SSIM':
|
||||
gpu_src_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0)
|
||||
gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_src_masked - gpu_pred_src_src_masked ), axis=[1,2,3])
|
||||
gpu_dst_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0)
|
||||
gpu_dst_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_dst_masked - gpu_pred_dst_dst_masked ), axis=[1,2,3])
|
||||
|
||||
if bg_factor > 0:
|
||||
gpu_dst_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0)
|
||||
gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_dst - gpu_pred_dst_dst ), axis=[1,2,3])
|
||||
gpu_src_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_src, gpu_pred_src_src, max_val=1.0)
|
||||
gpu_src_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_src - gpu_pred_src_src ), axis=[1,2,3])
|
||||
|
||||
elif self.options['loss_function'] == 'MS-SSIM+L1':
|
||||
|
||||
gpu_src_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0)
|
||||
gpu_dst_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0)
|
||||
|
||||
if bg_factor > 0:
|
||||
gpu_dst_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0)
|
||||
gpu_src_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_src, gpu_pred_src_src, max_val=1.0)
|
||||
|
||||
else:
|
||||
gpu_src_loss = tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||
gpu_src_loss += tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
|
||||
|
||||
gpu_dst_loss = tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
|
||||
gpu_dst_loss += tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1])
|
||||
|
||||
# Pixel loss
|
||||
gpu_dst_loss += tf.reduce_mean (10*tf.square(gpu_target_dst_masked-gpu_pred_dst_dst_masked), axis=[1,2,3])
|
||||
gpu_src_loss += tf.reduce_mean (10*tf.square(gpu_target_src_masked-gpu_pred_src_src_masked), axis=[1,2,3])
|
||||
|
||||
if bg_factor > 0:
|
||||
gpu_dst_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||
gpu_dst_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
|
||||
gpu_src_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||
gpu_src_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
|
||||
|
||||
if bg_factor > 0:
|
||||
gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_dst - gpu_pred_dst_dst ), axis=[1,2,3])
|
||||
gpu_src_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_src - gpu_pred_src_src ), axis=[1,2,3])
|
||||
|
||||
|
||||
|
||||
# Eyes+mouth prio loss
|
||||
if eyes_mouth_prio:
|
||||
gpu_src_loss += tf.reduce_mean (300*tf.abs (gpu_target_src*gpu_target_srcm_em-gpu_pred_src_src*gpu_target_srcm_em), axis=[1,2,3])
|
||||
gpu_dst_loss += tf.reduce_mean (300*tf.abs (gpu_target_dst*gpu_target_dstm_em-gpu_pred_dst_dst*gpu_target_dstm_em), axis=[1,2,3])
|
||||
# if eyes_mouth_prio:
|
||||
# gpu_src_loss += tf.reduce_mean (300*tf.abs (gpu_target_src*gpu_target_srcm_em-gpu_pred_src_src*gpu_target_srcm_em), axis=[1,2,3])
|
||||
# gpu_dst_loss += tf.reduce_mean (300*tf.abs (gpu_target_dst*gpu_target_dstm_em-gpu_pred_dst_dst*gpu_target_dstm_em), axis=[1,2,3])
|
||||
|
||||
if eyes_prio or mouth_prio:
|
||||
if eyes_prio and mouth_prio:
|
||||
gpu_target_part_mask_src = gpu_target_srcm_eye_mouth
|
||||
gpu_target_part_mask_dst = gpu_target_dstm_eye_mouth
|
||||
elif eyes_prio:
|
||||
gpu_target_part_mask_src = gpu_target_srcm_eyes
|
||||
gpu_target_part_mask_dst = gpu_target_dstm_eyes
|
||||
elif mouth_prio:
|
||||
gpu_target_part_mask_src = gpu_target_srcm_mouth
|
||||
gpu_target_part_mask_dst = gpu_target_dstm_mouth
|
||||
|
||||
gpu_src_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_src*gpu_target_part_mask_src - gpu_pred_src_src*gpu_target_part_mask_src ), axis=[1,2,3])
|
||||
gpu_dst_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_dst*gpu_target_part_mask_dst - gpu_pred_dst_dst*gpu_target_part_mask_dst ), axis=[1,2,3])
|
||||
|
||||
# Mask loss
|
||||
gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
|
||||
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
|
||||
gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm_all - gpu_pred_src_srcm ),axis=[1,2,3] )
|
||||
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm_all - gpu_pred_dst_dstm ),axis=[1,2,3] )
|
||||
|
||||
gpu_src_losses += [gpu_src_loss]
|
||||
gpu_dst_losses += [gpu_dst_loss]
|
||||
|
@ -483,26 +603,50 @@ class AMPModel(ModelBase):
|
|||
|
||||
|
||||
if gan_power != 0:
|
||||
|
||||
gpu_pred_src_src_d, gpu_pred_src_src_d2 = self.GAN(gpu_pred_src_src_masked)
|
||||
gpu_pred_dst_dst_d, gpu_pred_dst_dst_d2 = self.GAN(gpu_pred_dst_dst_masked)
|
||||
gpu_target_src_d, gpu_target_src_d2 = self.GAN(gpu_target_src_masked)
|
||||
gpu_target_dst_d, gpu_target_dst_d2 = self.GAN(gpu_target_dst_masked)
|
||||
|
||||
gpu_GAN_loss = (DLossOnes (gpu_target_src_d) + DLossOnes (gpu_target_src_d2) + \
|
||||
DLossZeros(gpu_pred_src_src_d) + DLossZeros(gpu_pred_src_src_d2) + \
|
||||
DLossOnes (gpu_target_dst_d) + DLossOnes (gpu_target_dst_d2) + \
|
||||
DLossZeros(gpu_pred_dst_dst_d) + DLossZeros(gpu_pred_dst_dst_d2)
|
||||
) * (1.0 / 8)
|
||||
def get_smooth_noisy_labels(label, tensor, smoothing=0.1, noise=0.05):
|
||||
num_labels = self.batch_size
|
||||
for d in tensor.get_shape().as_list()[1:]:
|
||||
num_labels *= d
|
||||
|
||||
probs = tf.math.log([[noise, 1-noise]]) if label == 1 else tf.math.log([[1-noise, noise]])
|
||||
x = tf.random.categorical(probs, num_labels)
|
||||
x = tf.cast(x, tf.float32)
|
||||
x = tf.math.scalar_mul(1-smoothing, x)
|
||||
# x = x + (smoothing/num_labels)
|
||||
x = tf.reshape(x, (self.batch_size,) + tuple(tensor.get_shape().as_list()[1:]))
|
||||
return x
|
||||
|
||||
smoothing = self.options['gan_smoothing']
|
||||
noise = self.options['gan_noise']
|
||||
|
||||
gpu_pred_src_src_d_ones = tf.ones_like(gpu_pred_src_src_d)
|
||||
gpu_pred_src_src_d2_ones = tf.ones_like(gpu_pred_src_src_d2)
|
||||
|
||||
gpu_pred_src_src_d_smooth_zeros = get_smooth_noisy_labels(0, gpu_pred_src_src_d, smoothing=smoothing, noise=noise)
|
||||
gpu_pred_src_src_d2_smooth_zeros = get_smooth_noisy_labels(0, gpu_pred_src_src_d2, smoothing=smoothing, noise=noise)
|
||||
|
||||
gpu_target_src_d, gpu_target_src_d2 = self.GAN(gpu_target_src_masked)
|
||||
|
||||
gpu_target_src_d_smooth_ones = get_smooth_noisy_labels(1, gpu_target_src_d, smoothing=smoothing, noise=noise)
|
||||
gpu_target_src_d2_smooth_ones = get_smooth_noisy_labels(1, gpu_target_src_d2, smoothing=smoothing, noise=noise)
|
||||
|
||||
gpu_GAN_loss = DLoss(gpu_target_src_d_smooth_ones, gpu_target_src_d) \
|
||||
+ DLoss(gpu_pred_src_src_d_smooth_zeros, gpu_pred_src_src_d) \
|
||||
+ DLoss(gpu_target_src_d2_smooth_ones, gpu_target_src_d2) \
|
||||
+ DLoss(gpu_pred_src_src_d2_smooth_zeros, gpu_pred_src_src_d2)
|
||||
|
||||
gpu_GAN_loss_gradients += [ nn.gradients (gpu_GAN_loss, self.GAN.get_weights() ) ]
|
||||
|
||||
gpu_G_loss += (DLossOnes(gpu_pred_src_src_d) + DLossOnes(gpu_pred_src_src_d2) + \
|
||||
DLossOnes(gpu_pred_dst_dst_d) + DLossOnes(gpu_pred_dst_dst_d2)
|
||||
) * gan_power
|
||||
|
||||
# Minimal src-src-bg rec with total_variation_mse to suppress random bright dots from gan
|
||||
gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_src_src)
|
||||
gpu_G_loss += 0.02*tf.reduce_mean(tf.square(gpu_pred_src_src_anti_masked-gpu_target_src_anti_masked),axis=[1,2,3] )
|
||||
gpu_G_loss += gan_power*(DLoss(gpu_pred_src_src_d_ones, gpu_pred_src_src_d) + \
|
||||
DLoss(gpu_pred_src_src_d2_ones, gpu_pred_src_src_d2))
|
||||
|
||||
if masked_training:
|
||||
# Minimal src-src-bg rec with total_variation_mse to suppress random bright dots from gan
|
||||
gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_src_src)
|
||||
gpu_G_loss += 0.02*tf.reduce_mean(tf.square(gpu_pred_src_src_anti_masked-gpu_target_src_anti_masked),axis=[1,2,3] )
|
||||
|
||||
gpu_G_loss_gradients += [ nn.gradients ( gpu_G_loss, self.G_weights ) ]
|
||||
|
||||
|
@ -616,6 +760,7 @@ class AMPModel(ModelBase):
|
|||
'random_blur': self.options['random_blur'],
|
||||
'random_jpeg': self.options['random_jpeg'],
|
||||
'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode,
|
||||
'random_hsv_shift_amount' : random_hsv_power,
|
||||
'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False,
|
||||
'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode,
|
||||
|
@ -743,7 +888,7 @@ class AMPModel(ModelBase):
|
|||
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
|
||||
|
||||
#override
|
||||
def onGetPreview(self, samples, for_history=False, filenames=None):
|
||||
def onGetPreview(self, samples, for_history=False):
|
||||
( (warped_src, target_src, target_srcm, target_srcm_em),
|
||||
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
|
||||
|
||||
|
@ -775,10 +920,6 @@ class AMPModel(ModelBase):
|
|||
|
||||
i = np.random.randint(n_samples) if not for_history else 0
|
||||
|
||||
if filenames is not None and len(filenames) > 0:
|
||||
S[i] = label_face_filename(S[i], filenames[0][i])
|
||||
D[i] = label_face_filename(D[i], filenames[1][i])
|
||||
|
||||
st = [ np.concatenate ((S[i], D[i], DD[i]*DDM_000[i]), axis=1) ]
|
||||
st += [ np.concatenate ((SS[i], DD[i], SD_100[i] ), axis=1) ]
|
||||
|
||||
|
@ -803,13 +944,16 @@ class AMPModel(ModelBase):
|
|||
|
||||
#override
|
||||
def get_MergerConfig(self):
|
||||
morph_factor = np.clip ( io.input_number ("Morph factor", 1.0, add_info="0.0 .. 1.0"), 0.0, 1.0 )
|
||||
|
||||
def predictor_morph(face):
|
||||
return self.predictor_func(face, morph_factor)
|
||||
|
||||
|
||||
def predictor_morph(face, func_morph_factor=1.0):
|
||||
return self.predictor_func(face, func_morph_factor)
|
||||
|
||||
import merger
|
||||
return predictor_morph, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=self.face_type, default_mode = 'overlay')
|
||||
return predictor_morph, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=self.face_type, default_mode = 'overlay', is_morphable=True)
|
||||
|
||||
#override
|
||||
def get_config_schema_path(self):
|
||||
config_path = Path(__file__).parent.absolute() / Path("config_schema.json")
|
||||
return config_path
|
||||
|
||||
Model = AMPModel
|
||||
|
|
256
models/Model_AMP/config_schema.json
Normal file
256
models/Model_AMP/config_schema.json
Normal file
|
@ -0,0 +1,256 @@
|
|||
{
|
||||
"$schema": "http://json-schema.org/draft-07/schema#",
|
||||
"$ref": "#/definitions/dfl_config",
|
||||
"definitions": {
|
||||
"dfl_config": {
|
||||
"type": "object",
|
||||
"additionalProperties": false,
|
||||
"properties": {
|
||||
"use_fp16": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"morph_factor": {
|
||||
"type": "number",
|
||||
"minimum":0.0,
|
||||
"maximum":0.5
|
||||
},
|
||||
"resolution": {
|
||||
"type": "integer",
|
||||
"minimum": 64,
|
||||
"maximum": 640,
|
||||
"multipleOf": 16
|
||||
},
|
||||
"face_type": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"h",
|
||||
"mf",
|
||||
"f",
|
||||
"wf",
|
||||
"head",
|
||||
"custom"
|
||||
]
|
||||
},
|
||||
"models_opt_on_gpu": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"ae_dims": {
|
||||
"type": "integer",
|
||||
"minimum": 32,
|
||||
"maximum": 1024
|
||||
},
|
||||
"e_dims": {
|
||||
"type": "integer",
|
||||
"minimum": 16,
|
||||
"maximum": 256,
|
||||
"multipleOf": 2
|
||||
},
|
||||
"inter_dims": {
|
||||
"type": "integer",
|
||||
"minimum": 32,
|
||||
"maximum": 2048,
|
||||
"multipleOf": 2
|
||||
},
|
||||
"d_dims": {
|
||||
"type": "integer",
|
||||
"minimum": 16,
|
||||
"maximum": 256,
|
||||
"multipleOf": 2
|
||||
},
|
||||
"d_mask_dims": {
|
||||
"type": "integer",
|
||||
"minimum": 16,
|
||||
"maximum": 256,
|
||||
"multipleOf": 2
|
||||
},
|
||||
"masked_training": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"eyes_prio": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"mouth_prio": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"uniform_yaw": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"blur_out_mask": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"adabelief": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"lr_dropout": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"y",
|
||||
"n",
|
||||
"cpu"
|
||||
]
|
||||
},
|
||||
"loss_function": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"SSIM",
|
||||
"MS-SSIM",
|
||||
"MS-SSIM+L1"
|
||||
]
|
||||
},
|
||||
"random_warp": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"random_hsv_power": {
|
||||
"type": "number",
|
||||
"minimum": 0.0,
|
||||
"maximum": 0.3
|
||||
},
|
||||
"random_downsample": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"random_noise": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"random_blur": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"random_jpeg": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"background_power": {
|
||||
"type": "number",
|
||||
"minimum": 0.0,
|
||||
"maximum": 1.0
|
||||
},
|
||||
"ct_mode": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"none",
|
||||
"rct",
|
||||
"lct",
|
||||
"mkl",
|
||||
"idt",
|
||||
"sot"
|
||||
]
|
||||
},
|
||||
"random_color": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"clipgrad": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"pretrain": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"session_name": {
|
||||
"type": "string"
|
||||
},
|
||||
"autobackup_hour": {
|
||||
"type": "integer",
|
||||
"minimum": 0,
|
||||
"maximum": 24
|
||||
},
|
||||
"maximum_n_backups": {
|
||||
"type": "integer"
|
||||
},
|
||||
"write_preview_history": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"target_iter": {
|
||||
"type": "integer",
|
||||
"minimum": 0
|
||||
},
|
||||
"retraining_samples": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"random_src_flip": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"random_dst_flip": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"batch_size": {
|
||||
"type": "integer",
|
||||
"minimum": 1
|
||||
},
|
||||
"gan_power": {
|
||||
"type": "number",
|
||||
"minimum": 0.0,
|
||||
"maximum": 5.0
|
||||
},
|
||||
"gan_version": {
|
||||
"type": "integer",
|
||||
"minimum": 2,
|
||||
"maximum": 3
|
||||
},
|
||||
"gan_patch_size": {
|
||||
"type": "integer",
|
||||
"minimum": 3,
|
||||
"maximum": 640
|
||||
},
|
||||
"gan_dims": {
|
||||
"type": "integer",
|
||||
"minimum": 4,
|
||||
"maximum": 512
|
||||
},
|
||||
"gan_smoothing": {
|
||||
"type": "number",
|
||||
"minimum": 0.0,
|
||||
"maximum": 0.5
|
||||
},
|
||||
"gan_noise": {
|
||||
"type": "number",
|
||||
"minimum": 0.0,
|
||||
"maximum": 0.5
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"adabelief",
|
||||
"ae_dims",
|
||||
"autobackup_hour",
|
||||
"background_power",
|
||||
"batch_size",
|
||||
"blur_out_mask",
|
||||
"clipgrad",
|
||||
"ct_mode",
|
||||
"d_dims",
|
||||
"d_mask_dims",
|
||||
"e_dims",
|
||||
"inter_dims",
|
||||
"morph_factor",
|
||||
"eyes_prio",
|
||||
"face_type",
|
||||
"gan_dims",
|
||||
"gan_noise",
|
||||
"gan_patch_size",
|
||||
"gan_power",
|
||||
"gan_smoothing",
|
||||
"gan_version",
|
||||
"loss_function",
|
||||
"lr_dropout",
|
||||
"masked_training",
|
||||
"maximum_n_backups",
|
||||
"models_opt_on_gpu",
|
||||
"mouth_prio",
|
||||
"pretrain",
|
||||
"random_blur",
|
||||
"random_color",
|
||||
"random_downsample",
|
||||
"random_dst_flip",
|
||||
"random_hsv_power",
|
||||
"random_jpeg",
|
||||
"random_noise",
|
||||
"random_src_flip",
|
||||
"random_warp",
|
||||
"resolution",
|
||||
"retraining_samples",
|
||||
"session_name",
|
||||
"target_iter",
|
||||
"uniform_yaw",
|
||||
"use_fp16",
|
||||
"write_preview_history"
|
||||
],
|
||||
"title": "dfl_config"
|
||||
}
|
||||
}
|
||||
}
|
|
@ -9,9 +9,17 @@ from core.leras import nn
|
|||
from facelib import FaceType
|
||||
from models import ModelBase
|
||||
from samplelib import *
|
||||
from utils.label_face import label_face_filename
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
class QModel(ModelBase):
|
||||
#override
|
||||
def on_initialize_options(self):
|
||||
ask_override = False if self.read_from_conf else self.ask_override()
|
||||
if self.is_first_run() or ask_override:
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.ask_batch_size()
|
||||
|
||||
#override
|
||||
def on_initialize(self):
|
||||
device_config = nn.getCurrentDeviceConfig()
|
||||
|
@ -81,7 +89,7 @@ class QModel(ModelBase):
|
|||
if self.is_training:
|
||||
# Adjust batch size for multiple GPU
|
||||
gpu_count = max(1, len(devices) )
|
||||
bs_per_gpu = max(1, 4 // gpu_count)
|
||||
bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
|
||||
self.set_batch_size( gpu_count*bs_per_gpu)
|
||||
|
||||
# Compute losses per GPU
|
||||
|
@ -279,7 +287,7 @@ class QModel(ModelBase):
|
|||
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
|
||||
|
||||
#override
|
||||
def onGetPreview(self, samples, for_history=False, filenames=None):
|
||||
def onGetPreview(self, samples, for_history=False):
|
||||
( (warped_src, target_src, target_srcm),
|
||||
(warped_dst, target_dst, target_dstm) ) = samples
|
||||
|
||||
|
@ -289,12 +297,6 @@ class QModel(ModelBase):
|
|||
target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )]
|
||||
|
||||
n_samples = min(4, self.get_batch_size() )
|
||||
|
||||
if filenames is not None and len(filenames) > 0:
|
||||
for i in range(n_samples):
|
||||
S[i] = label_face_filename(S[i], filenames[0][i])
|
||||
D[i] = label_face_filename(D[i], filenames[1][i])
|
||||
|
||||
result = []
|
||||
st = []
|
||||
for i in range(n_samples):
|
||||
|
@ -329,5 +331,9 @@ class QModel(ModelBase):
|
|||
return self.predictor_func, (self.resolution, self.resolution, 3), merger.MergerConfigMasked(face_type=self.face_type,
|
||||
default_mode = 'overlay',
|
||||
)
|
||||
#override
|
||||
def get_config_schema_path(self):
|
||||
config_path = Path(__file__).parent.absolute() / Path("config_schema.json")
|
||||
return config_path
|
||||
|
||||
Model = QModel
|
||||
|
|
20
models/Model_Quick96/config_schema.json
Normal file
20
models/Model_Quick96/config_schema.json
Normal file
|
@ -0,0 +1,20 @@
|
|||
{
|
||||
"$schema": "http://json-schema.org/draft-07/schema#",
|
||||
"$ref": "#/definitions/dfl_config",
|
||||
"definitions": {
|
||||
"dfl_config": {
|
||||
"type": "object",
|
||||
"additionalProperties": false,
|
||||
"properties": {
|
||||
"batch_size": {
|
||||
"type": "integer",
|
||||
"minimum": 1
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"batch_size",
|
||||
],
|
||||
"title": "dfl_config"
|
||||
}
|
||||
}
|
||||
}
|
|
@ -9,7 +9,8 @@ from core.leras import nn
|
|||
from facelib import FaceType
|
||||
from models import ModelBase
|
||||
from samplelib import *
|
||||
from utils.label_face import label_face_filename
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
class SAEHDModel(ModelBase):
|
||||
|
||||
|
@ -29,7 +30,7 @@ class SAEHDModel(ModelBase):
|
|||
min_res = 64
|
||||
max_res = 640
|
||||
|
||||
#default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||
default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||
default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 128)
|
||||
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'f')
|
||||
default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True)
|
||||
|
@ -69,88 +70,92 @@ class SAEHDModel(ModelBase):
|
|||
default_random_color = self.options['random_color'] = self.load_or_def_option('random_color', False)
|
||||
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
|
||||
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
|
||||
default_use_fp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||
#default_use_fp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||
|
||||
ask_override = self.ask_override()
|
||||
ask_override = False if self.read_from_conf else self.ask_override()
|
||||
if self.is_first_run() or ask_override:
|
||||
self.ask_session_name()
|
||||
self.ask_autobackup_hour()
|
||||
self.ask_maximum_n_backups()
|
||||
self.ask_write_preview_history()
|
||||
self.ask_target_iter()
|
||||
self.ask_retraining_samples()
|
||||
self.ask_random_src_flip()
|
||||
self.ask_random_dst_flip()
|
||||
self.ask_batch_size(suggest_batch_size)
|
||||
#self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.')
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.ask_session_name()
|
||||
self.ask_autobackup_hour()
|
||||
self.ask_maximum_n_backups()
|
||||
self.ask_write_preview_history()
|
||||
self.ask_target_iter()
|
||||
self.ask_retraining_samples()
|
||||
self.ask_random_src_flip()
|
||||
self.ask_random_dst_flip()
|
||||
self.ask_batch_size(suggest_batch_size)
|
||||
self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.')
|
||||
|
||||
if self.is_first_run():
|
||||
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16 and 32 for -d archi.")
|
||||
resolution = np.clip ( (resolution // 16) * 16, min_res, max_res)
|
||||
self.options['resolution'] = resolution
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head', 'custom'], help_message="Half / mid face / full face / whole face / head / custom. Half face has better resolution, but covers less area of cheeks. Mid face is 30% wider than half face. 'Whole face' covers full area of face include forehead. 'head' covers full head, but requires XSeg for src and dst faceset.").lower()
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16 and 32 for -d archi.")
|
||||
resolution = np.clip ( (resolution // 16) * 16, min_res, max_res)
|
||||
self.options['resolution'] = resolution
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head', 'custom'], help_message="Half / mid face / full face / whole face / head / custom. Half face has better resolution, but covers less area of cheeks. Mid face is 30% wider than half face. 'Whole face' covers full area of face include forehead. 'head' covers full head, but requires XSeg for src and dst faceset.").lower()
|
||||
|
||||
while True:
|
||||
archi = io.input_str ("AE architecture", default_archi, help_message=\
|
||||
"""
|
||||
'df' keeps more identity-preserved face.
|
||||
'liae' can fix overly different face shapes.
|
||||
'-u' increased likeness of the face.
|
||||
'-d' (experimental) doubling the resolution using the same computation cost.
|
||||
Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||
""").lower()
|
||||
while True:
|
||||
archi = io.input_str ("AE architecture", default_archi, help_message=\
|
||||
"""
|
||||
'df' keeps more identity-preserved face.
|
||||
'liae' can fix overly different face shapes.
|
||||
'-u' increased likeness of the face.
|
||||
'-d' (experimental) doubling the resolution using the same computation cost.
|
||||
Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||
""").lower()
|
||||
|
||||
archi_split = archi.split('-')
|
||||
archi_split = archi.split('-')
|
||||
|
||||
if len(archi_split) == 2:
|
||||
archi_type, archi_opts = archi_split
|
||||
elif len(archi_split) == 1:
|
||||
archi_type, archi_opts = archi_split[0], None
|
||||
else:
|
||||
continue
|
||||
|
||||
if archi_type not in ['df', 'liae']:
|
||||
continue
|
||||
|
||||
if archi_opts is not None:
|
||||
if len(archi_opts) == 0:
|
||||
continue
|
||||
if len([ 1 for opt in archi_opts if opt not in ['u','d','t','c'] ]) != 0:
|
||||
if len(archi_split) == 2:
|
||||
archi_type, archi_opts = archi_split
|
||||
elif len(archi_split) == 1:
|
||||
archi_type, archi_opts = archi_split[0], None
|
||||
else:
|
||||
continue
|
||||
|
||||
if 'd' in archi_opts:
|
||||
self.options['resolution'] = np.clip ( (self.options['resolution'] // 32) * 32, min_res, max_res)
|
||||
if archi_type not in ['df', 'liae']:
|
||||
continue
|
||||
|
||||
break
|
||||
self.options['archi'] = archi
|
||||
if archi_opts is not None:
|
||||
if len(archi_opts) == 0:
|
||||
continue
|
||||
if len([ 1 for opt in archi_opts if opt not in ['u','d','t','c'] ]) != 0:
|
||||
continue
|
||||
|
||||
default_d_dims = self.options['d_dims'] = self.load_or_def_option('d_dims', 64)
|
||||
if 'd' in archi_opts:
|
||||
self.options['resolution'] = np.clip ( (self.options['resolution'] // 32) * 32, min_res, max_res)
|
||||
|
||||
default_d_mask_dims = default_d_dims // 3
|
||||
default_d_mask_dims += default_d_mask_dims % 2
|
||||
default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims)
|
||||
break
|
||||
self.options['archi'] = archi
|
||||
|
||||
default_d_dims = self.options['d_dims'] = self.load_or_def_option('d_dims', 64)
|
||||
|
||||
default_d_mask_dims = default_d_dims // 3
|
||||
default_d_mask_dims += default_d_mask_dims % 2
|
||||
default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims)
|
||||
|
||||
if self.is_first_run():
|
||||
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
|
||||
|
||||
e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
|
||||
self.options['e_dims'] = e_dims + e_dims % 2
|
||||
e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
|
||||
self.options['e_dims'] = e_dims + e_dims % 2
|
||||
|
||||
d_dims = np.clip ( io.input_int("Decoder dimensions", default_d_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
|
||||
self.options['d_dims'] = d_dims + d_dims % 2
|
||||
d_dims = np.clip ( io.input_int("Decoder dimensions", default_d_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
|
||||
self.options['d_dims'] = d_dims + d_dims % 2
|
||||
|
||||
d_mask_dims = np.clip ( io.input_int("Decoder mask dimensions", default_d_mask_dims, add_info="16-256", help_message="Typical mask dimensions = decoder dimensions / 3. If you manually cut out obstacles from the dst mask, you can increase this parameter to achieve better quality." ), 16, 256 )
|
||||
self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2
|
||||
d_mask_dims = np.clip ( io.input_int("Decoder mask dimensions", default_d_mask_dims, add_info="16-256", help_message="Typical mask dimensions = decoder dimensions / 3. If you manually cut out obstacles from the dst mask, you can increase this parameter to achieve better quality." ), 16, 256 )
|
||||
self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2
|
||||
|
||||
if self.is_first_run() or ask_override:
|
||||
if self.options['face_type'] == 'wf' or self.options['face_type'] == 'head' or self.options['face_type'] == 'custom':
|
||||
self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' or 'head' type. Masked training clips training area to full_face mask or XSeg mask, thus network will train the faces properly.")
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
if self.options['face_type'] == 'wf' or self.options['face_type'] == 'head' or self.options['face_type'] == 'custom':
|
||||
self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' or 'head' type. Masked training clips training area to full_face mask or XSeg mask, thus network will train the faces properly.")
|
||||
|
||||
self.options['eyes_prio'] = io.input_bool ("Eyes priority", default_eyes_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction ( especially on HD architectures ) by forcing the neural network to train eyes with higher priority. before/after https://i.imgur.com/YQHOuSR.jpg ')
|
||||
self.options['mouth_prio'] = io.input_bool ("Mouth priority", default_mouth_prio, help_message='Helps to fix mouth problems during training by forcing the neural network to train mouth with higher priority similar to eyes ')
|
||||
self.options['eyes_prio'] = io.input_bool ("Eyes priority", default_eyes_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction ( especially on HD architectures ) by forcing the neural network to train eyes with higher priority. before/after https://i.imgur.com/YQHOuSR.jpg ')
|
||||
self.options['mouth_prio'] = io.input_bool ("Mouth priority", default_mouth_prio, help_message='Helps to fix mouth problems during training by forcing the neural network to train mouth with higher priority similar to eyes ')
|
||||
|
||||
self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
|
||||
self.options['blur_out_mask'] = io.input_bool ("Blur out mask", default_blur_out_mask, help_message='Blurs nearby area outside of applied face mask of training samples. The result is the background near the face is smoothed and less noticeable on swapped face. The exact xseg mask in src and dst faceset is required.')
|
||||
self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
|
||||
self.options['blur_out_mask'] = io.input_bool ("Blur out mask", default_blur_out_mask, help_message='Blurs nearby area outside of applied face mask of training samples. The result is the background near the face is smoothed and less noticeable on swapped face. The exact xseg mask in src and dst faceset is required.')
|
||||
|
||||
default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0)
|
||||
default_gan_version = self.options['gan_version'] = self.load_or_def_option('gan_version', 2)
|
||||
|
@ -160,54 +165,55 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
default_gan_noise = self.options['gan_noise'] = self.load_or_def_option('gan_noise', 0.0)
|
||||
|
||||
if self.is_first_run() or ask_override:
|
||||
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
|
||||
|
||||
self.options['adabelief'] = io.input_bool ("Use AdaBelief optimizer?", default_adabelief, help_message="Use AdaBelief optimizer. It requires more VRAM, but the accuracy and the generalization of the model is higher.")
|
||||
self.options['adabelief'] = io.input_bool ("Use AdaBelief optimizer?", default_adabelief, help_message="Use AdaBelief optimizer. It requires more VRAM, but the accuracy and the generalization of the model is higher.")
|
||||
|
||||
self.options['lr_dropout'] = io.input_str (f"Use learning rate dropout", default_lr_dropout, ['n','y','cpu'], help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. Enabled it before `disable random warp` and before GAN. \nn - disabled.\ny - enabled\ncpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration.")
|
||||
self.options['lr_dropout'] = io.input_str (f"Use learning rate dropout", default_lr_dropout, ['n','y','cpu'], help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. Enabled it before `disable random warp` and before GAN. \nn - disabled.\ny - enabled\ncpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration.")
|
||||
|
||||
self.options['loss_function'] = io.input_str(f"Loss function", default_loss_function, ['SSIM', 'MS-SSIM', 'MS-SSIM+L1'],
|
||||
help_message="Change loss function used for image quality assessment.")
|
||||
self.options['loss_function'] = io.input_str(f"Loss function", default_loss_function, ['SSIM', 'MS-SSIM', 'MS-SSIM+L1'],
|
||||
help_message="Change loss function used for image quality assessment.")
|
||||
|
||||
self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.")
|
||||
self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.")
|
||||
|
||||
self.options['random_hsv_power'] = np.clip ( io.input_number ("Random hue/saturation/light intensity", default_random_hsv_power, add_info="0.0 .. 0.3", help_message="Random hue/saturation/light intensity applied to the src face set only at the input of the neural network. Stabilizes color perturbations during face swapping. Reduces the quality of the color transfer by selecting the closest one in the src faceset. Thus the src faceset must be diverse enough. Typical fine value is 0.05"), 0.0, 0.3 )
|
||||
self.options['random_hsv_power'] = np.clip ( io.input_number ("Random hue/saturation/light intensity", default_random_hsv_power, add_info="0.0 .. 0.3", help_message="Random hue/saturation/light intensity applied to the src face set only at the input of the neural network. Stabilizes color perturbations during face swapping. Reduces the quality of the color transfer by selecting the closest one in the src faceset. Thus the src faceset must be diverse enough. Typical fine value is 0.05"), 0.0, 0.3 )
|
||||
|
||||
self.options['random_downsample'] = io.input_bool("Enable random downsample of samples", default_random_downsample, help_message="")
|
||||
self.options['random_noise'] = io.input_bool("Enable random noise added to samples", default_random_noise, help_message="")
|
||||
self.options['random_blur'] = io.input_bool("Enable random blur of samples", default_random_blur, help_message="")
|
||||
self.options['random_jpeg'] = io.input_bool("Enable random jpeg compression of samples", default_random_jpeg, help_message="")
|
||||
self.options['random_downsample'] = io.input_bool("Enable random downsample of samples", default_random_downsample, help_message="")
|
||||
self.options['random_noise'] = io.input_bool("Enable random noise added to samples", default_random_noise, help_message="")
|
||||
self.options['random_blur'] = io.input_bool("Enable random blur of samples", default_random_blur, help_message="")
|
||||
self.options['random_jpeg'] = io.input_bool("Enable random jpeg compression of samples", default_random_jpeg, help_message="")
|
||||
|
||||
self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 10.0", help_message="Train the network in Generative Adversarial manner. Forces the neural network to learn small details of the face. Enable it only when the face is trained enough and don't disable. Typical value is 0.1"), 0.0, 10.0 )
|
||||
self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 10.0", help_message="Train the network in Generative Adversarial manner. Forces the neural network to learn small details of the face. Enable it only when the face is trained enough and don't disable. Typical value is 0.1"), 0.0, 10.0 )
|
||||
|
||||
if self.options['gan_power'] != 0.0:
|
||||
self.options['gan_version'] = np.clip (io.input_int("GAN version", default_gan_version, add_info="2 or 3", help_message="Choose GAN version (v2: 7/16/2020, v3: 1/3/2021):"), 2, 3)
|
||||
if self.options['gan_power'] != 0.0:
|
||||
self.options['gan_version'] = np.clip (io.input_int("GAN version", default_gan_version, add_info="2 or 3", help_message="Choose GAN version (v2: 7/16/2020, v3: 1/3/2021):"), 2, 3)
|
||||
|
||||
if self.options['gan_version'] == 3:
|
||||
gan_patch_size = np.clip ( io.input_int("GAN patch size", default_gan_patch_size, add_info="3-640", help_message="The higher patch size, the higher the quality, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is resolution / 8." ), 3, 640 )
|
||||
self.options['gan_patch_size'] = gan_patch_size
|
||||
if self.options['gan_version'] == 3:
|
||||
gan_patch_size = np.clip ( io.input_int("GAN patch size", default_gan_patch_size, add_info="3-640", help_message="The higher patch size, the higher the quality, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is resolution / 8." ), 3, 640 )
|
||||
self.options['gan_patch_size'] = gan_patch_size
|
||||
|
||||
gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-64", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 64 )
|
||||
self.options['gan_dims'] = gan_dims
|
||||
gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-64", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 64 )
|
||||
self.options['gan_dims'] = gan_dims
|
||||
|
||||
self.options['gan_smoothing'] = np.clip ( io.input_number("GAN label smoothing", default_gan_smoothing, add_info="0 - 0.5", help_message="Uses soft labels with values slightly off from 0/1 for GAN, has a regularizing effect"), 0, 0.5)
|
||||
self.options['gan_noise'] = np.clip ( io.input_number("GAN noisy labels", default_gan_noise, add_info="0 - 0.5", help_message="Marks some images with the wrong label, helps prevent collapse"), 0, 0.5)
|
||||
self.options['gan_smoothing'] = np.clip ( io.input_number("GAN label smoothing", default_gan_smoothing, add_info="0 - 0.5", help_message="Uses soft labels with values slightly off from 0/1 for GAN, has a regularizing effect"), 0, 0.5)
|
||||
self.options['gan_noise'] = np.clip ( io.input_number("GAN noisy labels", default_gan_noise, add_info="0 - 0.5", help_message="Marks some images with the wrong label, helps prevent collapse"), 0, 0.5)
|
||||
|
||||
if 'df' in self.options['archi']:
|
||||
self.options['true_face_power'] = np.clip ( io.input_number ("'True face' power.", default_true_face_power, add_info="0.0000 .. 1.0", help_message="Experimental option. Discriminates result face to be more like src face. Higher value - stronger discrimination. Typical value is 0.01 . Comparison - https://i.imgur.com/czScS9q.png"), 0.0, 1.0 )
|
||||
else:
|
||||
self.options['true_face_power'] = 0.0
|
||||
if 'df' in self.options['archi']:
|
||||
self.options['true_face_power'] = np.clip ( io.input_number ("'True face' power.", default_true_face_power, add_info="0.0000 .. 1.0", help_message="Experimental option. Discriminates result face to be more like src face. Higher value - stronger discrimination. Typical value is 0.01 . Comparison - https://i.imgur.com/czScS9q.png"), 0.0, 1.0 )
|
||||
else:
|
||||
self.options['true_face_power'] = 0.0
|
||||
|
||||
self.options['background_power'] = np.clip ( io.input_number("Background power", default_background_power, add_info="0.0..1.0", help_message="Learn the area outside of the mask. Helps smooth out area near the mask boundaries. Can be used at any time"), 0.0, 1.0 )
|
||||
self.options['background_power'] = np.clip ( io.input_number("Background power", default_background_power, add_info="0.0..1.0", help_message="Learn the area outside of the mask. Helps smooth out area near the mask boundaries. Can be used at any time"), 0.0, 1.0 )
|
||||
|
||||
self.options['face_style_power'] = np.clip ( io.input_number("Face style power", default_face_style_power, add_info="0.0..100.0", help_message="Learn the color of the predicted face to be the same as dst inside mask. If you want to use this option with 'whole_face' you have to use XSeg trained mask. Warning: Enable it only after 10k iters, when predicted face is clear enough to start learn style. Start from 0.001 value and check history changes. Enabling this option increases the chance of model collapse."), 0.0, 100.0 )
|
||||
self.options['bg_style_power'] = np.clip ( io.input_number("Background style power", default_bg_style_power, add_info="0.0..100.0", help_message="Learn the area outside mask of the predicted face to be the same as dst. If you want to use this option with 'whole_face' you have to use XSeg trained mask. For whole_face you have to use XSeg trained mask. This can make face more like dst. Enabling this option increases the chance of model collapse. Typical value is 2.0"), 0.0, 100.0 )
|
||||
self.options['face_style_power'] = np.clip ( io.input_number("Face style power", default_face_style_power, add_info="0.0..100.0", help_message="Learn the color of the predicted face to be the same as dst inside mask. If you want to use this option with 'whole_face' you have to use XSeg trained mask. Warning: Enable it only after 10k iters, when predicted face is clear enough to start learn style. Start from 0.001 value and check history changes. Enabling this option increases the chance of model collapse."), 0.0, 100.0 )
|
||||
self.options['bg_style_power'] = np.clip ( io.input_number("Background style power", default_bg_style_power, add_info="0.0..100.0", help_message="Learn the area outside mask of the predicted face to be the same as dst. If you want to use this option with 'whole_face' you have to use XSeg trained mask. For whole_face you have to use XSeg trained mask. This can make face more like dst. Enabling this option increases the chance of model collapse. Typical value is 2.0"), 0.0, 100.0 )
|
||||
|
||||
self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot', 'fs-aug'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best. FS aug adds random color to dst and src")
|
||||
self.options['random_color'] = io.input_bool ("Random color", default_random_color, help_message="Samples are randomly rotated around the L axis in LAB colorspace, helps generalize training")
|
||||
self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
|
||||
self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot', 'fs-aug'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best. FS aug adds random color to dst and src")
|
||||
self.options['random_color'] = io.input_bool ("Random color", default_random_color, help_message="Samples are randomly rotated around the L axis in LAB colorspace, helps generalize training")
|
||||
self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
|
||||
|
||||
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain, help_message="Pretrain the model with large amount of various faces. After that, model can be used to train the fakes more quickly. Forces random_warp=N, random_flips=Y, gan_power=0.0, lr_dropout=N, styles=0.0, uniform_yaw=Y")
|
||||
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain, help_message="Pretrain the model with large amount of various faces. After that, model can be used to train the fakes more quickly. Forces random_warp=N, random_flips=Y, gan_power=0.0, lr_dropout=N, styles=0.0, uniform_yaw=Y")
|
||||
|
||||
if self.options['pretrain'] and self.get_pretraining_data_path() is None:
|
||||
raise Exception("pretraining_data_path is not defined")
|
||||
|
@ -787,7 +793,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
|
||||
random_ct_samples_path=training_data_dst_path if ct_mode is not None and not self.pretrain else None
|
||||
|
||||
cpu_count = min(multiprocessing.cpu_count(), 4)
|
||||
cpu_count = multiprocessing.cpu_count()
|
||||
src_generators_count = cpu_count // 2
|
||||
dst_generators_count = cpu_count // 2
|
||||
if ct_mode is not None:
|
||||
|
@ -947,7 +953,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
|
||||
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
|
||||
#override
|
||||
def onGetPreview(self, samples, for_history=False, filenames=None):
|
||||
def onGetPreview(self, samples, for_history=False):
|
||||
( (warped_src, target_src, target_srcm, target_srcm_em),
|
||||
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
|
||||
|
||||
|
@ -959,11 +965,6 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
|
||||
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
|
||||
|
||||
if filenames is not None and len(filenames) > 0:
|
||||
for i in range(n_samples):
|
||||
S[i] = label_face_filename(S[i], filenames[0][i])
|
||||
D[i] = label_face_filename(D[i], filenames[1][i])
|
||||
|
||||
if self.resolution <= 256:
|
||||
result = []
|
||||
|
||||
|
@ -1063,4 +1064,9 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
import merger
|
||||
return self.predictor_func, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=self.face_type, default_mode = 'overlay')
|
||||
|
||||
#override
|
||||
def get_config_schema_path(self):
|
||||
config_path = Path(__file__).parent.absolute() / Path("config_schema.json")
|
||||
return config_path
|
||||
|
||||
Model = SAEHDModel
|
||||
|
|
|
@ -11,6 +11,8 @@ from facelib import FaceType, XSegNet
|
|||
from models import ModelBase
|
||||
from samplelib import *
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
class XSegModel(ModelBase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
|
@ -18,7 +20,7 @@ class XSegModel(ModelBase):
|
|||
|
||||
#override
|
||||
def on_initialize_options(self):
|
||||
ask_override = self.ask_override()
|
||||
ask_override = False if self.read_from_conf else self.ask_override()
|
||||
|
||||
if not self.is_first_run() and ask_override:
|
||||
if io.input_bool(f"Restart training?", False, help_message="Reset model weights and start training from scratch."):
|
||||
|
@ -28,11 +30,13 @@ class XSegModel(ModelBase):
|
|||
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
|
||||
|
||||
if self.is_first_run():
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower()
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower()
|
||||
|
||||
if self.is_first_run() or ask_override:
|
||||
self.ask_batch_size(4, range=[2,16])
|
||||
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain)
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.ask_batch_size(4, range=[2,16])
|
||||
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain)
|
||||
|
||||
if not self.is_exporting and (self.options['pretrain'] and self.get_pretraining_data_path() is None):
|
||||
raise Exception("pretraining_data_path is not defined")
|
||||
|
@ -51,13 +55,11 @@ class XSegModel(ModelBase):
|
|||
|
||||
self.resolution = resolution = 256
|
||||
|
||||
|
||||
self.face_type = {'h' : FaceType.HALF,
|
||||
'mf' : FaceType.MID_FULL,
|
||||
'f' : FaceType.FULL,
|
||||
'wf' : FaceType.WHOLE_FACE,
|
||||
'head' : FaceType.HEAD}[ self.options['face_type'] ]
|
||||
|
||||
|
||||
place_model_on_cpu = len(devices) == 0
|
||||
models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name
|
||||
|
@ -279,5 +281,10 @@ class XSegModel(ModelBase):
|
|||
output_names=['out_mask:0'],
|
||||
opset=13,
|
||||
output_path=output_path)
|
||||
|
||||
#override
|
||||
def get_config_schema_path(self):
|
||||
config_path = Path(__file__).parent.absolute() / Path("config_schema.json")
|
||||
return config_path
|
||||
|
||||
Model = XSegModel
|
||||
Model = XSegModel
|
||||
|
|
39
models/Model_XSeg/config_schema.json
Normal file
39
models/Model_XSeg/config_schema.json
Normal file
|
@ -0,0 +1,39 @@
|
|||
{
|
||||
"$schema": "http://json-schema.org/draft-07/schema#",
|
||||
"$ref": "#/definitions/dfl_config",
|
||||
"definitions": {
|
||||
"dfl_config": {
|
||||
"type": "object",
|
||||
"additionalProperties": false,
|
||||
"properties": {
|
||||
"use_fp16": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"face_type": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"h",
|
||||
"mf",
|
||||
"f",
|
||||
"wf",
|
||||
"head",
|
||||
"custom"
|
||||
]
|
||||
},
|
||||
"pretrain": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"batch_size": {
|
||||
"type": "integer",
|
||||
"minimum": 1
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"batch_size",
|
||||
"face_type",
|
||||
"pretrain",
|
||||
],
|
||||
"title": "dfl_config"
|
||||
}
|
||||
}
|
||||
}
|
|
@ -3,3 +3,5 @@ from .ModelBase import ModelBase
|
|||
def import_model(model_class_name):
|
||||
module = __import__('Model_'+model_class_name, globals(), locals(), [], 1)
|
||||
return getattr(module, 'Model')
|
||||
|
||||
|
||||
|
|
|
@ -11,3 +11,4 @@ tensorflow-gpu==2.4.0
|
|||
tf2onnx==1.9.3
|
||||
tensorboardX
|
||||
crc32c
|
||||
jsonschema
|
||||
|
|
|
@ -14,3 +14,4 @@ Flask==1.1.1
|
|||
flask-socketio==4.2.1
|
||||
tensorboardX
|
||||
crc32c
|
||||
jsonschema
|
||||
|
|
|
@ -115,7 +115,6 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
samples, index_host, ct_samples, ct_index_host = param
|
||||
|
||||
bs = self.batch_size
|
||||
filenames = []
|
||||
while True:
|
||||
batches = None
|
||||
|
||||
|
@ -142,6 +141,4 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
for i in range(len(x)):
|
||||
batches[i].append ( x[i] )
|
||||
|
||||
filenames.append(sample.filename)
|
||||
|
||||
yield ([ np.array(batch) for batch in batches], filenames)
|
||||
yield [ np.array(batch) for batch in batches]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue