diff --git a/facelib/PoseEstimator.py b/facelib/PoseEstimator.py index 64adbba..cc0f694 100644 --- a/facelib/PoseEstimator.py +++ b/facelib/PoseEstimator.py @@ -21,7 +21,7 @@ class PoseEstimator(object): exec( nnlib.import_all(), locals(), globals() ) self.angles = [90, 45, 30, 10, 2] - self.alpha_cat_losses = [0.07,0.05,0.03,0.01,0.01] + self.alpha_cat_losses = [7,5,3,1,1] self.class_nums = [ angle+1 for angle in self.angles ] self.model = PoseEstimator.BuildModel(resolution, class_nums=self.class_nums) @@ -36,7 +36,13 @@ class PoseEstimator(object): if load_weights: self.model.load_weights (str(self.weights_path)) - + else: + conv_weights_list = [] + for layer in self.model.layers: + if type(layer) == keras.layers.Conv2D: + conv_weights_list += [layer.weights[0]] #Conv2D kernel_weights + CAInitializerMP ( conv_weights_list ) + inp_t, = self.model.inputs bins_t = self.model.outputs @@ -61,7 +67,7 @@ class PoseEstimator(object): idx_tensor = K.constant( np.array([idx for idx in range(self.class_nums[0])], dtype=K.floatx() ) ) pitch_t, yaw_t, roll_t = K.sum ( bins_t[0] * idx_tensor, 1), K.sum ( bins_t[1] * idx_tensor, 1), K.sum ( bins_t[2] * idx_tensor, 1) - reg_alpha = 0.02 + reg_alpha = 2 reg_pitch_loss = reg_alpha * K.mean(K.square( inp_pitch_t - pitch_t), -1) reg_yaw_loss = reg_alpha * K.mean(K.square( inp_yaw_t - yaw_t), -1) reg_roll_loss = reg_alpha * K.mean(K.square( inp_roll_t - roll_t), -1) @@ -70,7 +76,7 @@ class PoseEstimator(object): yaw_loss = reg_yaw_loss + sum(loss_yaw) roll_loss = reg_roll_loss + sum(loss_roll) - opt = Adam(lr=0.001, tf_cpu_mode=0) + opt = Adam(lr=0.000001) if training: self.train = K.function ([inp_t, inp_pitch_t, inp_yaw_t, inp_roll_t] + inp_bins_t,