mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-19 13:09:56 -07:00
Merge branch 'master' into amp_updates
This commit is contained in:
commit
592ebfa0e0
13 changed files with 656 additions and 168 deletions
4
main.py
4
main.py
|
@ -131,6 +131,8 @@ if __name__ == "__main__":
|
|||
'start_tensorboard' : arguments.start_tensorboard,
|
||||
'dump_ckpt' : arguments.dump_ckpt,
|
||||
'flask_preview' : arguments.flask_preview,
|
||||
'config_training_file' : arguments.config_training_file,
|
||||
'auto_gen_config' : arguments.auto_gen_config
|
||||
}
|
||||
from mainscripts import Trainer
|
||||
Trainer.main(**kwargs)
|
||||
|
@ -150,6 +152,8 @@ if __name__ == "__main__":
|
|||
p.add_argument('--silent-start', action="store_true", dest="silent_start", default=False, help="Silent start. Automatically chooses Best GPU and last used model.")
|
||||
p.add_argument('--tensorboard-logdir', action=fixPathAction, dest="tensorboard_dir", help="Directory of the tensorboard output files")
|
||||
p.add_argument('--start-tensorboard', action="store_true", dest="start_tensorboard", default=False, help="Automatically start the tensorboard server preconfigured to the tensorboard-logdir")
|
||||
p.add_argument('--config-training-file', action=fixPathAction, dest="config_training_file", help="Path to custom yaml configuration file")
|
||||
p.add_argument('--auto-gen-config', action="store_true", dest="auto_gen_config", default=False, help="Saves a configuration file for each model used in the trainer. It'll have the same model name")
|
||||
|
||||
|
||||
p.add_argument('--dump-ckpt', action="store_true", dest="dump_ckpt", default=False, help="Dump the model to ckpt format.")
|
||||
|
|
|
@ -71,6 +71,7 @@ def trainerThread (s2c, c2s, e,
|
|||
debug=False,
|
||||
tensorboard_dir=None,
|
||||
start_tensorboard=False,
|
||||
config_training_file=None,
|
||||
dump_ckpt=False,
|
||||
**kwargs):
|
||||
while True:
|
||||
|
@ -101,6 +102,8 @@ def trainerThread (s2c, c2s, e,
|
|||
force_gpu_idxs=force_gpu_idxs,
|
||||
cpu_only=cpu_only,
|
||||
silent_start=silent_start,
|
||||
config_training_file=config_training_file,
|
||||
auto_gen_config=kwargs.get("auto_gen_config", False),
|
||||
debug=debug)
|
||||
|
||||
is_reached_goal = model.is_reached_iter_goal()
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import colorsys
|
||||
import inspect
|
||||
from io import FileIO
|
||||
import json
|
||||
import multiprocessing
|
||||
import operator
|
||||
|
@ -10,6 +11,9 @@ import tempfile
|
|||
import time
|
||||
import datetime
|
||||
from pathlib import Path
|
||||
import yaml
|
||||
from jsonschema import validate, ValidationError
|
||||
import models
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
@ -35,6 +39,8 @@ class ModelBase(object):
|
|||
cpu_only=False,
|
||||
debug=False,
|
||||
force_model_class_name=None,
|
||||
config_training_file=None,
|
||||
auto_gen_config=False,
|
||||
silent_start=False,
|
||||
**kwargs):
|
||||
self.is_training = is_training
|
||||
|
@ -44,6 +50,8 @@ class ModelBase(object):
|
|||
self.training_data_dst_path = training_data_dst_path
|
||||
self.pretraining_data_path = pretraining_data_path
|
||||
self.pretrained_model_path = pretrained_model_path
|
||||
self.config_training_file = config_training_file
|
||||
self.auto_gen_config = auto_gen_config
|
||||
self.no_preview = no_preview
|
||||
self.debug = debug
|
||||
|
||||
|
@ -141,12 +149,50 @@ class ModelBase(object):
|
|||
self.choosed_gpu_indexes = None
|
||||
|
||||
model_data = {}
|
||||
# True if yaml conf file exists
|
||||
self.config_file_exists = False
|
||||
# True if user chooses to read options external or internal conf file
|
||||
self.read_from_conf = False
|
||||
config_error = False
|
||||
#check if config_training_file mode is enabled
|
||||
if config_training_file is not None:
|
||||
self.config_file_path = Path(config_training_file)
|
||||
# Creates folder if folder doesn't exist
|
||||
if not self.config_file_path.exists():
|
||||
os.makedirs(self.config_file_path, exist_ok=True)
|
||||
# Ask if user wants to read options from external or internal conf file only if external conf file exists
|
||||
# or auto_gen_config is true
|
||||
if Path(self.get_strpath_configuration_path()).exists() or self.auto_gen_config:
|
||||
self.read_from_conf = io.input_bool(
|
||||
f'Do you want to read training options from {"external" if self.auto_gen_config else "internal"} file?',
|
||||
True,
|
||||
'Read options from configuration file instead of asking one by one each option'
|
||||
)
|
||||
|
||||
# If user decides to read from external or internal conf file
|
||||
if self.read_from_conf:
|
||||
# Try to read dictionary from external of internal yaml file according
|
||||
# to the value of auto_gen_config
|
||||
self.options = self.read_from_config_file(auto_gen=self.auto_gen_config)
|
||||
# If options dict is empty options will be loaded from dat file
|
||||
if self.options is None:
|
||||
io.log_info(f"Config file validation error, check your config")
|
||||
config_error = True
|
||||
elif not self.options.keys():
|
||||
io.log_info(f"Configuration file doesn't exist. A standard configuration file will be created.")
|
||||
else:
|
||||
self.config_file_exists = True
|
||||
else:
|
||||
io.log_info(f"Configuration file doesn't exist. A standard configuration file will be created.")
|
||||
|
||||
self.model_data_path = Path( self.get_strpath_storage_for_file('data.dat') )
|
||||
if self.model_data_path.exists():
|
||||
io.log_info (f"Loading {self.model_name} model...")
|
||||
model_data = pickle.loads ( self.model_data_path.read_bytes() )
|
||||
self.iter = model_data.get('iter',0)
|
||||
if self.iter != 0:
|
||||
# read options from the .dat file only if the user chooses not to read options from the yaml file
|
||||
if not self.config_file_exists:
|
||||
self.options = model_data['options']
|
||||
self.loss_history = model_data.get('loss_history', [])
|
||||
self.sample_for_preview = model_data.get('sample_for_preview', None)
|
||||
|
@ -183,6 +229,11 @@ class ModelBase(object):
|
|||
if self.is_first_run():
|
||||
# save as default options only for first run model initialize
|
||||
self.default_options_path.write_bytes( pickle.dumps (self.options) )
|
||||
|
||||
# save config file
|
||||
if self.config_training_file is not None and not self.config_file_exists and not config_error:
|
||||
self.save_config_file(self.auto_gen_config)
|
||||
|
||||
self.session_name = self.options.get('session_name', "")
|
||||
self.autobackup_hour = self.options.get('autobackup_hour', 0)
|
||||
self.maximum_n_backups = self.options.get('maximum_n_backups', 24)
|
||||
|
@ -382,6 +433,10 @@ class ModelBase(object):
|
|||
#return predictor_func, predictor_input_shape, MergerConfig() for the model
|
||||
raise NotImplementedError
|
||||
|
||||
#overridable
|
||||
def get_config_schema_path(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_pretraining_data_path(self):
|
||||
return self.pretraining_data_path
|
||||
|
||||
|
@ -429,6 +484,60 @@ class ModelBase(object):
|
|||
self.autobackup_start_time += self.autobackup_hour*3600
|
||||
self.create_backup()
|
||||
|
||||
def read_from_config_file(self, auto_gen=False):
|
||||
"""
|
||||
Read yaml config file and saves it into a dictionary
|
||||
|
||||
Args:
|
||||
auto_gen (bool, optional): True if you want that a yaml file is readed from model folder. Defaults to False.
|
||||
|
||||
Returns:
|
||||
[dict]: Returns the options dictionary if everything is alright otherwise an empty dictionary.
|
||||
"""
|
||||
fun = self.get_strpath_configuration_path if not auto_gen else self.get_model_conf_path
|
||||
|
||||
try:
|
||||
with open(fun(), 'r') as file, open(self.get_config_schema_path(), 'r') as schema:
|
||||
data = yaml.safe_load(file)
|
||||
validate(data, yaml.safe_load(schema))
|
||||
except FileNotFoundError:
|
||||
return {}
|
||||
except ValidationError as ve:
|
||||
io.log_err(f"{ve}")
|
||||
return None
|
||||
|
||||
for key, value in data.items():
|
||||
if isinstance(value, bool):
|
||||
continue
|
||||
if isinstance(value, int):
|
||||
data[key] = np.int32(value)
|
||||
elif isinstance(value, float):
|
||||
data[key] = np.float64(value)
|
||||
|
||||
return data
|
||||
|
||||
def save_config_file(self, auto_gen=False):
|
||||
"""
|
||||
Saves options dictionary in a yaml file.
|
||||
|
||||
Args:
|
||||
auto_gen ([bool], optional): True if you want that a yaml file is generated inside model folder for each model. Defaults to None.
|
||||
"""
|
||||
saving_dict = {}
|
||||
for key, value in self.options.items():
|
||||
if isinstance(value, np.int32) or isinstance(value, np.float64):
|
||||
saving_dict[key] = value.item()
|
||||
else:
|
||||
saving_dict[key] = value
|
||||
|
||||
fun = self.get_strpath_configuration_path if not auto_gen else self.get_model_conf_path
|
||||
|
||||
try:
|
||||
with open(fun(), 'w') as file:
|
||||
yaml.dump(saving_dict, file, sort_keys=False)
|
||||
except OSError as exception:
|
||||
io.log_info('Impossible to write YAML configuration file -> ', exception)
|
||||
|
||||
def create_backup(self):
|
||||
io.log_info ("Creating backup...", end='\r')
|
||||
|
||||
|
@ -561,9 +670,15 @@ class ModelBase(object):
|
|||
def get_strpath_storage_for_file(self, filename):
|
||||
return str( self.saved_models_path / ( self.get_model_name() + '_' + filename) )
|
||||
|
||||
def get_strpath_configuration_path(self):
|
||||
return str(self.config_file_path / 'configuration_file.yaml')
|
||||
|
||||
def get_summary_path(self):
|
||||
return self.get_strpath_storage_for_file('summary.txt')
|
||||
|
||||
def get_model_conf_path(self):
|
||||
return self.get_strpath_storage_for_file('configuration_file.yaml')
|
||||
|
||||
def get_summary_text(self):
|
||||
visible_options = self.options.copy()
|
||||
visible_options.update(self.options_show_override)
|
||||
|
|
|
@ -11,12 +11,13 @@ from models import ModelBase
|
|||
from samplelib import *
|
||||
from core.cv2ex import *
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
class AMPModel(ModelBase):
|
||||
|
||||
#override
|
||||
def on_initialize_options(self):
|
||||
default_retraining_samples = self.options['retraining_samples'] = self.load_or_def_option('retraining_samples', False)
|
||||
# default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||
default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 224)
|
||||
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'f')
|
||||
default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True)
|
||||
|
@ -54,10 +55,11 @@ class AMPModel(ModelBase):
|
|||
default_ct_mode = self.options['ct_mode'] = self.load_or_def_option('ct_mode', 'none')
|
||||
default_random_color = self.options['random_color'] = self.load_or_def_option('random_color', False)
|
||||
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
|
||||
default_use_fp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||
default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||
|
||||
ask_override = self.ask_override()
|
||||
ask_override = False if self.read_from_conf else self.ask_override()
|
||||
if self.is_first_run() or ask_override:
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.ask_autobackup_hour()
|
||||
self.ask_session_name()
|
||||
self.ask_maximum_n_backups()
|
||||
|
@ -67,16 +69,19 @@ class AMPModel(ModelBase):
|
|||
self.ask_random_src_flip()
|
||||
self.ask_random_dst_flip()
|
||||
self.ask_batch_size(8)
|
||||
# self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.')
|
||||
self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.')
|
||||
|
||||
|
||||
|
||||
if self.is_first_run():
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 32 .")
|
||||
resolution = np.clip ( (resolution // 32) * 32, 64, 640)
|
||||
self.options['resolution'] = resolution
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head', 'custom'], help_message="Half / mid face / full face / whole face / head / custom. Half face has better resolution, but covers less area of cheeks. Mid face is 30% wider than half face. 'Whole face' covers full area of face include forehead. 'head' covers full head, but requires XSeg for src and dst faceset.").lower()
|
||||
|
||||
|
||||
|
||||
default_d_dims = self.options['d_dims'] = self.load_or_def_option('d_dims', 64)
|
||||
|
||||
default_d_mask_dims = default_d_dims // 3
|
||||
|
@ -84,6 +89,7 @@ class AMPModel(ModelBase):
|
|||
default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims)
|
||||
|
||||
if self.is_first_run():
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
|
||||
self.options['inter_dims'] = np.clip ( io.input_int("Inter dimensions", default_inter_dims, add_info="32-2048", help_message="Should be equal or more than AutoEncoder dimensions. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 2048 )
|
||||
|
||||
|
@ -97,6 +103,7 @@ class AMPModel(ModelBase):
|
|||
self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2
|
||||
|
||||
if self.is_first_run() or ask_override:
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
|
||||
morph_factor = np.clip ( io.input_number ("Morph factor.", default_morph_factor, add_info="0.1 .. 0.5", help_message="Typical fine value is 0.5"), 0.1, 0.5 )
|
||||
self.options['morph_factor'] = morph_factor
|
||||
|
@ -122,6 +129,7 @@ class AMPModel(ModelBase):
|
|||
default_gan_noise = self.options['gan_noise'] = self.load_or_def_option('gan_noise', 0.0)
|
||||
|
||||
if self.is_first_run() or ask_override:
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
|
||||
|
||||
self.options['adabelief'] = io.input_bool ("Use AdaBelief optimizer?", default_adabelief, help_message="Use AdaBelief optimizer. It requires more VRAM, but the accuracy and the generalization of the model is higher.")
|
||||
|
@ -134,9 +142,9 @@ class AMPModel(ModelBase):
|
|||
|
||||
self.options['random_hsv_power'] = np.clip ( io.input_number ("Random hue/saturation/light intensity", default_random_hsv_power, add_info="0.0 .. 0.3", help_message="Random hue/saturation/light intensity applied to the src face set only at the input of the neural network. Stabilizes color perturbations during face swapping. Reduces the quality of the color transfer by selecting the closest one in the src faceset. Thus the src faceset must be diverse enough. Typical fine value is 0.05"), 0.0, 0.3 )
|
||||
|
||||
|
||||
self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 5.0", help_message="Forces the neural network to learn small details of the face. Enable it only when the face is trained enough with random_warp(off), and don't disable. The higher the value, the higher the chances of artifacts. Typical fine value is 0.1"), 0.0, 5.0 )
|
||||
|
||||
|
||||
if self.options['gan_power'] != 0.0:
|
||||
self.options['gan_version'] = np.clip (io.input_int("GAN version", default_gan_version, add_info="2 or 3", help_message="Choose GAN version (v2: 7/16/2020, v3: 1/3/2021):"), 2, 3)
|
||||
|
||||
|
@ -153,6 +161,7 @@ class AMPModel(ModelBase):
|
|||
|
||||
self.options['background_power'] = np.clip ( io.input_number("Background power", default_background_power, add_info="0.0..1.0", help_message="Learn the area outside of the mask. Helps smooth out area near the mask boundaries. Can be used at any time"), 0.0, 1.0 )
|
||||
|
||||
|
||||
self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot', 'fs-aug'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best.")
|
||||
self.options['random_color'] = io.input_bool ("Random color", default_random_color, help_message="Samples are randomly rotated around the L axis in LAB colorspace, helps generalize training")
|
||||
|
||||
|
@ -944,4 +953,10 @@ class AMPModel(ModelBase):
|
|||
import merger
|
||||
return predictor_morph, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=self.face_type, default_mode = 'overlay')
|
||||
|
||||
#override
|
||||
def get_config_schema_path(self):
|
||||
config_path = Path(__file__).parent.absolute() / Path("config_schema.json")
|
||||
return config_path
|
||||
|
||||
|
||||
Model = AMPModel
|
||||
|
|
256
models/Model_AMP/config_schema.json
Normal file
256
models/Model_AMP/config_schema.json
Normal file
|
@ -0,0 +1,256 @@
|
|||
{
|
||||
"$schema": "http://json-schema.org/draft-07/schema#",
|
||||
"$ref": "#/definitions/dfl_config",
|
||||
"definitions": {
|
||||
"dfl_config": {
|
||||
"type": "object",
|
||||
"additionalProperties": false,
|
||||
"properties": {
|
||||
"use_fp16": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"morph_factor": {
|
||||
"type": "number",
|
||||
"minimum":0.0,
|
||||
"maximum":0.5
|
||||
},
|
||||
"resolution": {
|
||||
"type": "integer",
|
||||
"minimum": 64,
|
||||
"maximum": 640,
|
||||
"multipleOf": 16
|
||||
},
|
||||
"face_type": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"h",
|
||||
"mf",
|
||||
"f",
|
||||
"wf",
|
||||
"head",
|
||||
"custom"
|
||||
]
|
||||
},
|
||||
"models_opt_on_gpu": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"ae_dims": {
|
||||
"type": "integer",
|
||||
"minimum": 32,
|
||||
"maximum": 1024
|
||||
},
|
||||
"e_dims": {
|
||||
"type": "integer",
|
||||
"minimum": 16,
|
||||
"maximum": 256,
|
||||
"multipleOf": 2
|
||||
},
|
||||
"inter_dims": {
|
||||
"type": "integer",
|
||||
"minimum": 32,
|
||||
"maximum": 2048,
|
||||
"multipleOf": 2
|
||||
},
|
||||
"d_dims": {
|
||||
"type": "integer",
|
||||
"minimum": 16,
|
||||
"maximum": 256,
|
||||
"multipleOf": 2
|
||||
},
|
||||
"d_mask_dims": {
|
||||
"type": "integer",
|
||||
"minimum": 16,
|
||||
"maximum": 256,
|
||||
"multipleOf": 2
|
||||
},
|
||||
"masked_training": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"eyes_prio": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"mouth_prio": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"uniform_yaw": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"blur_out_mask": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"adabelief": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"lr_dropout": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"y",
|
||||
"n",
|
||||
"cpu"
|
||||
]
|
||||
},
|
||||
"loss_function": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"SSIM",
|
||||
"MS-SSIM",
|
||||
"MS-SSIM+L1"
|
||||
]
|
||||
},
|
||||
"random_warp": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"random_hsv_power": {
|
||||
"type": "number",
|
||||
"minimum": 0.0,
|
||||
"maximum": 0.3
|
||||
},
|
||||
"random_downsample": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"random_noise": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"random_blur": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"random_jpeg": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"background_power": {
|
||||
"type": "number",
|
||||
"minimum": 0.0,
|
||||
"maximum": 1.0
|
||||
},
|
||||
"ct_mode": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"none",
|
||||
"rct",
|
||||
"lct",
|
||||
"mkl",
|
||||
"idt",
|
||||
"sot"
|
||||
]
|
||||
},
|
||||
"random_color": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"clipgrad": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"pretrain": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"session_name": {
|
||||
"type": "string"
|
||||
},
|
||||
"autobackup_hour": {
|
||||
"type": "integer",
|
||||
"minimum": 0,
|
||||
"maximum": 24
|
||||
},
|
||||
"maximum_n_backups": {
|
||||
"type": "integer"
|
||||
},
|
||||
"write_preview_history": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"target_iter": {
|
||||
"type": "integer",
|
||||
"minimum": 0
|
||||
},
|
||||
"retraining_samples": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"random_src_flip": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"random_dst_flip": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"batch_size": {
|
||||
"type": "integer",
|
||||
"minimum": 1
|
||||
},
|
||||
"gan_power": {
|
||||
"type": "number",
|
||||
"minimum": 0.0,
|
||||
"maximum": 5.0
|
||||
},
|
||||
"gan_version": {
|
||||
"type": "integer",
|
||||
"minimum": 2,
|
||||
"maximum": 3
|
||||
},
|
||||
"gan_patch_size": {
|
||||
"type": "integer",
|
||||
"minimum": 3,
|
||||
"maximum": 640
|
||||
},
|
||||
"gan_dims": {
|
||||
"type": "integer",
|
||||
"minimum": 4,
|
||||
"maximum": 512
|
||||
},
|
||||
"gan_smoothing": {
|
||||
"type": "number",
|
||||
"minimum": 0.0,
|
||||
"maximum": 0.5
|
||||
},
|
||||
"gan_noise": {
|
||||
"type": "number",
|
||||
"minimum": 0.0,
|
||||
"maximum": 0.5
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"adabelief",
|
||||
"ae_dims",
|
||||
"autobackup_hour",
|
||||
"background_power",
|
||||
"batch_size",
|
||||
"blur_out_mask",
|
||||
"clipgrad",
|
||||
"ct_mode",
|
||||
"d_dims",
|
||||
"d_mask_dims",
|
||||
"e_dims",
|
||||
"inter_dims",
|
||||
"morph_factor",
|
||||
"eyes_prio",
|
||||
"face_type",
|
||||
"gan_dims",
|
||||
"gan_noise",
|
||||
"gan_patch_size",
|
||||
"gan_power",
|
||||
"gan_smoothing",
|
||||
"gan_version",
|
||||
"loss_function",
|
||||
"lr_dropout",
|
||||
"masked_training",
|
||||
"maximum_n_backups",
|
||||
"models_opt_on_gpu",
|
||||
"mouth_prio",
|
||||
"pretrain",
|
||||
"random_blur",
|
||||
"random_color",
|
||||
"random_downsample",
|
||||
"random_dst_flip",
|
||||
"random_hsv_power",
|
||||
"random_jpeg",
|
||||
"random_noise",
|
||||
"random_src_flip",
|
||||
"random_warp",
|
||||
"resolution",
|
||||
"retraining_samples",
|
||||
"session_name",
|
||||
"target_iter",
|
||||
"uniform_yaw",
|
||||
"use_fp16",
|
||||
"write_preview_history"
|
||||
],
|
||||
"title": "dfl_config"
|
||||
}
|
||||
}
|
||||
}
|
|
@ -10,7 +10,16 @@ from facelib import FaceType
|
|||
from models import ModelBase
|
||||
from samplelib import *
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
class QModel(ModelBase):
|
||||
#override
|
||||
def on_initialize_options(self):
|
||||
ask_override = False if self.read_from_conf else self.ask_override()
|
||||
if self.is_first_run() or ask_override:
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.ask_batch_size()
|
||||
|
||||
#override
|
||||
def on_initialize(self):
|
||||
device_config = nn.getCurrentDeviceConfig()
|
||||
|
@ -80,7 +89,7 @@ class QModel(ModelBase):
|
|||
if self.is_training:
|
||||
# Adjust batch size for multiple GPU
|
||||
gpu_count = max(1, len(devices) )
|
||||
bs_per_gpu = max(1, 4 // gpu_count)
|
||||
bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
|
||||
self.set_batch_size( gpu_count*bs_per_gpu)
|
||||
|
||||
# Compute losses per GPU
|
||||
|
@ -317,5 +326,9 @@ class QModel(ModelBase):
|
|||
return self.predictor_func, (self.resolution, self.resolution, 3), merger.MergerConfigMasked(face_type=self.face_type,
|
||||
default_mode = 'overlay',
|
||||
)
|
||||
#override
|
||||
def get_config_schema_path(self):
|
||||
config_path = Path(__file__).parent.absolute() / Path("config_schema.json")
|
||||
return config_path
|
||||
|
||||
Model = QModel
|
||||
|
|
20
models/Model_Quick96/config_schema.json
Normal file
20
models/Model_Quick96/config_schema.json
Normal file
|
@ -0,0 +1,20 @@
|
|||
{
|
||||
"$schema": "http://json-schema.org/draft-07/schema#",
|
||||
"$ref": "#/definitions/dfl_config",
|
||||
"definitions": {
|
||||
"dfl_config": {
|
||||
"type": "object",
|
||||
"additionalProperties": false,
|
||||
"properties": {
|
||||
"batch_size": {
|
||||
"type": "integer",
|
||||
"minimum": 1
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"batch_size",
|
||||
],
|
||||
"title": "dfl_config"
|
||||
}
|
||||
}
|
||||
}
|
|
@ -10,6 +10,8 @@ from facelib import FaceType
|
|||
from models import ModelBase
|
||||
from samplelib import *
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
class SAEHDModel(ModelBase):
|
||||
|
||||
#override
|
||||
|
@ -28,7 +30,7 @@ class SAEHDModel(ModelBase):
|
|||
min_res = 64
|
||||
max_res = 640
|
||||
|
||||
#default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||
default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||
default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 128)
|
||||
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'f')
|
||||
default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True)
|
||||
|
@ -68,10 +70,11 @@ class SAEHDModel(ModelBase):
|
|||
default_random_color = self.options['random_color'] = self.load_or_def_option('random_color', False)
|
||||
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
|
||||
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
|
||||
default_use_fp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||
#default_use_fp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||
|
||||
ask_override = self.ask_override()
|
||||
ask_override = False if self.read_from_conf else self.ask_override()
|
||||
if self.is_first_run() or ask_override:
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.ask_session_name()
|
||||
self.ask_autobackup_hour()
|
||||
self.ask_maximum_n_backups()
|
||||
|
@ -81,9 +84,10 @@ class SAEHDModel(ModelBase):
|
|||
self.ask_random_src_flip()
|
||||
self.ask_random_dst_flip()
|
||||
self.ask_batch_size(suggest_batch_size)
|
||||
#self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.')
|
||||
self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.')
|
||||
|
||||
if self.is_first_run():
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16 and 32 for -d archi.")
|
||||
resolution = np.clip ( (resolution // 16) * 16, min_res, max_res)
|
||||
self.options['resolution'] = resolution
|
||||
|
@ -130,6 +134,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims)
|
||||
|
||||
if self.is_first_run():
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
|
||||
|
||||
e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
|
||||
|
@ -142,6 +147,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2
|
||||
|
||||
if self.is_first_run() or ask_override:
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
if self.options['face_type'] == 'wf' or self.options['face_type'] == 'head' or self.options['face_type'] == 'custom':
|
||||
self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' or 'head' type. Masked training clips training area to full_face mask or XSeg mask, thus network will train the faces properly.")
|
||||
|
||||
|
@ -159,6 +165,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
default_gan_noise = self.options['gan_noise'] = self.load_or_def_option('gan_noise', 0.0)
|
||||
|
||||
if self.is_first_run() or ask_override:
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
|
||||
|
||||
self.options['adabelief'] = io.input_bool ("Use AdaBelief optimizer?", default_adabelief, help_message="Use AdaBelief optimizer. It requires more VRAM, but the accuracy and the generalization of the model is higher.")
|
||||
|
@ -806,7 +813,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
'random_noise': self.options['random_noise'],
|
||||
'random_blur': self.options['random_blur'],
|
||||
'random_jpeg': self.options['random_jpeg'],
|
||||
'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode,
|
||||
'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'random_hsv_shift_amount' : random_hsv_power,
|
||||
'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
|
@ -1053,4 +1060,9 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
import merger
|
||||
return self.predictor_func, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=self.face_type, default_mode = 'overlay')
|
||||
|
||||
#override
|
||||
def get_config_schema_path(self):
|
||||
config_path = Path(__file__).parent.absolute() / Path("config_schema.json")
|
||||
return config_path
|
||||
|
||||
Model = SAEHDModel
|
||||
|
|
|
@ -11,6 +11,8 @@ from facelib import FaceType, XSegNet
|
|||
from models import ModelBase
|
||||
from samplelib import *
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
class XSegModel(ModelBase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
|
@ -18,7 +20,7 @@ class XSegModel(ModelBase):
|
|||
|
||||
#override
|
||||
def on_initialize_options(self):
|
||||
ask_override = self.ask_override()
|
||||
ask_override = False if self.read_from_conf else self.ask_override()
|
||||
|
||||
if not self.is_first_run() and ask_override:
|
||||
if io.input_bool(f"Restart training?", False, help_message="Reset model weights and start training from scratch."):
|
||||
|
@ -28,9 +30,11 @@ class XSegModel(ModelBase):
|
|||
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
|
||||
|
||||
if self.is_first_run():
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower()
|
||||
|
||||
if self.is_first_run() or ask_override:
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.ask_batch_size(4, range=[2,16])
|
||||
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain)
|
||||
|
||||
|
@ -51,14 +55,12 @@ class XSegModel(ModelBase):
|
|||
|
||||
self.resolution = resolution = 256
|
||||
|
||||
|
||||
self.face_type = {'h' : FaceType.HALF,
|
||||
'mf' : FaceType.MID_FULL,
|
||||
'f' : FaceType.FULL,
|
||||
'wf' : FaceType.WHOLE_FACE,
|
||||
'head' : FaceType.HEAD}[ self.options['face_type'] ]
|
||||
|
||||
|
||||
place_model_on_cpu = len(devices) == 0
|
||||
models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name
|
||||
|
||||
|
@ -280,4 +282,9 @@ class XSegModel(ModelBase):
|
|||
opset=13,
|
||||
output_path=output_path)
|
||||
|
||||
#override
|
||||
def get_config_schema_path(self):
|
||||
config_path = Path(__file__).parent.absolute() / Path("config_schema.json")
|
||||
return config_path
|
||||
|
||||
Model = XSegModel
|
39
models/Model_XSeg/config_schema.json
Normal file
39
models/Model_XSeg/config_schema.json
Normal file
|
@ -0,0 +1,39 @@
|
|||
{
|
||||
"$schema": "http://json-schema.org/draft-07/schema#",
|
||||
"$ref": "#/definitions/dfl_config",
|
||||
"definitions": {
|
||||
"dfl_config": {
|
||||
"type": "object",
|
||||
"additionalProperties": false,
|
||||
"properties": {
|
||||
"use_fp16": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"face_type": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"h",
|
||||
"mf",
|
||||
"f",
|
||||
"wf",
|
||||
"head",
|
||||
"custom"
|
||||
]
|
||||
},
|
||||
"pretrain": {
|
||||
"type": "boolean"
|
||||
},
|
||||
"batch_size": {
|
||||
"type": "integer",
|
||||
"minimum": 1
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"batch_size",
|
||||
"face_type",
|
||||
"pretrain",
|
||||
],
|
||||
"title": "dfl_config"
|
||||
}
|
||||
}
|
||||
}
|
|
@ -3,3 +3,5 @@ from .ModelBase import ModelBase
|
|||
def import_model(model_class_name):
|
||||
module = __import__('Model_'+model_class_name, globals(), locals(), [], 1)
|
||||
return getattr(module, 'Model')
|
||||
|
||||
|
||||
|
|
|
@ -11,3 +11,4 @@ tensorflow-gpu==2.4.0
|
|||
tf2onnx==1.9.3
|
||||
tensorboardX
|
||||
crc32c
|
||||
jsonschema
|
||||
|
|
|
@ -14,3 +14,4 @@ Flask==1.1.1
|
|||
flask-socketio==4.2.1
|
||||
tensorboardX
|
||||
crc32c
|
||||
jsonschema
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue