fix avatar multigpu mode

This commit is contained in:
iperov 2018-06-07 12:18:42 +04:00
parent adc1e701de
commit 58d9b4ae09
2 changed files with 37 additions and 29 deletions

View file

@ -3,6 +3,7 @@ from models import TrainingDataType
import numpy as np
import cv2
from nnlib import tf_dssim
from nnlib import DSSIMLossClass
from nnlib import conv
from nnlib import upscale
@ -37,42 +38,35 @@ class Model(ModelBase):
self.encoder64, self.decoder64_src, self.decoder64_dst, self.encoder256, self.decoder256 = self.to_multi_gpu_model_if_possible ( [self.encoder64, self.decoder64_src, self.decoder64_dst, self.encoder256, self.decoder256] )
input_A_warped64 = keras.layers.Input(img_shape64)
input_A_target64 = keras.layers.Input(img_shape64)
input_B_warped64 = keras.layers.Input(img_shape64)
input_B_target64 = keras.layers.Input(img_shape64)
A_rec64 = self.decoder64_src(self.encoder64(input_A_warped64))
B_rec64 = self.decoder64_dst(self.encoder64(input_B_warped64))
self.ae64 = self.keras.models.Model([input_A_warped64, input_B_warped64], [A_rec64, B_rec64] )
A_code64 = self.encoder64(input_A_warped64)
B_code64 = self.encoder64(input_B_warped64)
A_rec64 = self.decoder64_src(A_code64)
B_rec64 = self.decoder64_dst(B_code64)
A64_loss = tf_dssim(tf, input_A_target64, A_rec64)
B64_loss = tf_dssim(tf, input_B_target64, B_rec64)
total64_loss = A64_loss + B64_loss
if self.is_training_mode:
self.ae64, = self.to_multi_gpu_model_if_possible ( [self.ae64,] )
self.ed64_train = K.function ([input_A_warped64, input_A_target64, input_B_warped64, input_B_target64],[K.mean(total64_loss)],
self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(total64_loss, self.encoder64.trainable_weights + self.decoder64_src.trainable_weights + self.decoder64_dst.trainable_weights)
)
self.ae64.compile(optimizer=self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),
loss=[DSSIMLossClass(self.tf)(), DSSIMLossClass(self.tf)()] )
self.A64_view = K.function ([input_A_warped64], [A_rec64])
self.B64_view = K.function ([input_B_warped64], [B_rec64])
input_A_warped64 = keras.layers.Input(img_shape64)
input_A_target256 = keras.layers.Input(img_shape256)
A_code256 = self.encoder256(input_A_warped64)
A_rec256 = self.decoder256(A_code256)
A_rec256 = self.decoder256( self.encoder256(input_A_warped64) )
input_B_warped64 = keras.layers.Input(img_shape64)
B_code64 = self.encoder64(input_B_warped64)
BA_rec64 = self.decoder64_src(B_code64)
BA_code256 = self.encoder256(BA_rec64)
BA_rec256 = self.decoder256(BA_code256)
total256_loss = K.mean( tf_dssim(tf, input_A_target256, A_rec256) )
self.ed256_train = K.function ([input_A_warped64, input_A_target256],[total256_loss],
self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(total256_loss, self.encoder256.trainable_weights + self.decoder256.trainable_weights)
)
BA_rec64 = self.decoder64_src( self.encoder64(input_B_warped64) )
BA_rec256 = self.decoder256( self.encoder256(BA_rec64) )
self.ae256 = self.keras.models.Model([input_A_warped64], [A_rec256] )
if self.is_training_mode:
self.ae256, = self.to_multi_gpu_model_if_possible ( [self.ae256,] )
self.ae256.compile(optimizer=self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),
loss=[DSSIMLossClass(self.tf)()])
self.A256_view = K.function ([input_A_warped64], [A_rec256])
self.BA256_view = K.function ([input_B_warped64], [BA_rec256])
@ -108,10 +102,11 @@ class Model(ModelBase):
warped_src64, target_src64, target_src256, target_src_source64, target_src_source256 = sample[0]
warped_dst64, target_dst64, target_dst_source64, target_dst_source256 = sample[1]
loss64, = self.ed64_train ([warped_src64, target_src64, warped_dst64, target_dst64])
loss256, = self.ed256_train ([warped_src64, target_src256])
loss64, loss_src64, loss_dst64 = self.ae64.train_on_batch ([warped_src64, warped_dst64], [target_src64, target_dst64])
return ( ('loss64', loss64), ('loss256', loss256), )
loss256 = self.ae256.train_on_batch ([warped_src64], [target_src256])
return ( ('loss64', loss64 ), ('loss256', loss256), )
#override
def onGetPreview(self, sample):