Merge remote-tracking branch 'original/master' into whitespace-fix

This commit is contained in:
camjac251 2021-07-24 10:05:53 -05:00
commit 56f7add24c
No known key found for this signature in database
GPG key ID: BEB14628800F8CE9
21 changed files with 492 additions and 549 deletions

2
.vscode/launch.json vendored
View file

@ -12,7 +12,7 @@
"type": "python",
"request": "launch",
"program": "${env:DFL_ROOT}\\main.py",
"pythonPath": "${env:PYTHONEXECUTABLE}",
"python": "${env:PYTHONEXECUTABLE}",
"cwd": "${env:WORKSPACE}",
"console": "integratedTerminal",
"args": ["train",

View file

@ -29,8 +29,8 @@ More than 95% of deepfake videos are created with DeepFaceLab.
DeepFaceLab is used by such popular youtube channels as
|![](doc/tiktok_icon.png) [deeptomcruise](https://www.tiktok.com/@deeptomcruise)|![](doc/tiktok_icon.png) [1facerussia](https://www.tiktok.com/@1facerussia)|![](doc/tiktok_icon.png) [arnoldschwarzneggar](https://www.tiktok.com/@arnoldschwarzneggar)
|---|---|---|
|![](doc/tiktok_icon.png) [deeptomcruise](https://www.tiktok.com/@deeptomcruise)|![](doc/tiktok_icon.png) [1facerussia](https://www.tiktok.com/@1facerussia)|![](doc/tiktok_icon.png) [arnoldschwarzneggar](https://www.tiktok.com/@arnoldschwarzneggar)|![](doc/tiktok_icon.png) [mariahcareyathome?](https://www.tiktok.com/@mariahcareyathome?)
|---|---|---|---|
|![](doc/youtube_icon.png) [Ctrl Shift Face](https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g)|![](doc/youtube_icon.png) [VFXChris Ume](https://www.youtube.com/channel/UCGf4OlX_aTt8DlrgiH3jN3g/videos)|![](doc/youtube_icon.png) [Sham00k](https://www.youtube.com/channel/UCZXbWcv7fSZFTAZV4beckyw/videos)|
|---|---|---|
@ -194,7 +194,7 @@ Unfortunately, there is no "make everything ok" button in DeepFaceLab. You shoul
</td></tr>
<tr><td align="right">
<a href="https://tinyurl.com/4tb2tn4w">Windows (magnet link)</a>
<a href="https://tinyurl.com/2afv92ay">Windows (magnet link)</a>
</td><td align="center">Last release. Use torrent client to download.</td></tr>
<tr><td align="right">
@ -305,6 +305,17 @@ QQ群1095077489
<a href="https://www.deepfaker.xyz/">deepfaker.xyz</a>
</td><td align="center">中文学习站(非官方)</td></tr>
<tr><td colspan=2 align="center">
## Related works
</td></tr>
<tr><td align="right">
<a href="https://github.com/neuralchen/SimSwap">neuralchen/SimSwap</a>
</td><td align="center">Swapping face using ONE single photo 一张图免训练换脸</td></tr>
</td></tr>
</table>
<table align="center" border="0">

View file

@ -8,12 +8,15 @@ class DeepFakeArchi(nn.ArchiBase):
mod None - default
'quick'
"""
def __init__(self, resolution, mod=None, opts=None):
def __init__(self, resolution, use_fp16=False, mod=None, opts=None):
super().__init__()
if opts is None:
opts = ''
conv_dtype = tf.float16 if use_fp16 else tf.float32
if mod is None:
class Downscale(nn.ModelBase):
def __init__(self, in_ch, out_ch, kernel_size=5, *kwargs ):
@ -23,7 +26,7 @@ class DeepFakeArchi(nn.ArchiBase):
super().__init__(*kwargs)
def on_build(self, *args, **kwargs ):
self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME')
self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME', dtype=conv_dtype)
def forward(self, x):
x = self.conv1(x)
@ -40,7 +43,7 @@ class DeepFakeArchi(nn.ArchiBase):
last_ch = in_ch
for i in range(n_downscales):
cur_ch = ch*( min(2**i, 8) )
self.downs.append ( Downscale(last_ch, cur_ch, kernel_size=kernel_size) )
self.downs.append ( Downscale(last_ch, cur_ch, kernel_size=kernel_size))
last_ch = self.downs[-1].get_out_ch()
def forward(self, inp):
@ -50,8 +53,8 @@ class DeepFakeArchi(nn.ArchiBase):
return x
class Upscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME')
def on_build(self, in_ch, out_ch, kernel_size=3):
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, x):
x = self.conv1(x)
@ -60,9 +63,9 @@ class DeepFakeArchi(nn.ArchiBase):
return x
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
def on_build(self, ch, kernel_size=3):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, inp):
x = self.conv1(inp)
@ -76,16 +79,21 @@ class DeepFakeArchi(nn.ArchiBase):
self.in_ch = in_ch
self.e_ch = e_ch
super().__init__(**kwargs)
def on_build(self):
def on_build(self):
self.down1 = DownscaleBlock(self.in_ch, self.e_ch, n_downscales=4, kernel_size=5)
def forward(self, inp):
return nn.flatten(self.down1(inp))
def forward(self, x):
if use_fp16:
x = tf.cast(x, tf.float16)
x = nn.flatten(self.down1(x))
if use_fp16:
x = tf.cast(x, tf.float32)
return x
def get_out_res(self, res):
return res // (2**4)
def get_out_ch(self):
return self.e_ch * 8
@ -98,9 +106,10 @@ class DeepFakeArchi(nn.ArchiBase):
def on_build(self):
in_ch, ae_ch, ae_out_ch = self.in_ch, self.ae_ch, self.ae_out_ch
if 'u' in opts:
self.dense_norm = nn.DenseNorm()
self.dense1 = nn.Dense( in_ch, ae_ch )
self.dense2 = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * ae_out_ch )
self.upscale1 = Upscale(ae_out_ch, ae_out_ch)
@ -112,6 +121,9 @@ class DeepFakeArchi(nn.ArchiBase):
x = self.dense1(x)
x = self.dense2(x)
x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch)
if use_fp16:
x = tf.cast(x, tf.float16)
x = self.upscale1(x)
return x
@ -122,7 +134,7 @@ class DeepFakeArchi(nn.ArchiBase):
return self.ae_out_ch
class Decoder(nn.ModelBase):
def on_build(self, in_ch, d_ch, d_mask_ch ):
def on_build(self, in_ch, d_ch, d_mask_ch):
self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3)
self.upscale1 = Upscale(d_ch*8, d_ch*4, kernel_size=3)
self.upscale2 = Upscale(d_ch*4, d_ch*2, kernel_size=3)
@ -131,25 +143,23 @@ class DeepFakeArchi(nn.ArchiBase):
self.res1 = ResidualBlock(d_ch*4, kernel_size=3)
self.res2 = ResidualBlock(d_ch*2, kernel_size=3)
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME')
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype)
self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3)
self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3)
self.upscalem2 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME')
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
if 'd' in opts:
self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.upscalem3 = Upscale(d_mask_ch*2, d_mask_ch*1, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME')
self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
else:
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME')
def forward(self, inp):
z = inp
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
def forward(self, z):
x = self.upscale0(z)
x = self.res0(x)
x = self.upscale1(x)
@ -157,40 +167,11 @@ class DeepFakeArchi(nn.ArchiBase):
x = self.upscale2(x)
x = self.res2(x)
if 'd' in opts:
x0 = tf.nn.sigmoid(self.out_conv(x))
x0 = nn.upsample2d(x0)
x1 = tf.nn.sigmoid(self.out_conv1(x))
x1 = nn.upsample2d(x1)
x2 = tf.nn.sigmoid(self.out_conv2(x))
x2 = nn.upsample2d(x2)
x3 = tf.nn.sigmoid(self.out_conv3(x))
x3 = nn.upsample2d(x3)
if nn.data_format == "NHWC":
tile_cfg = ( 1, resolution // 2, resolution //2, 1)
else:
tile_cfg = ( 1, 1, resolution // 2, resolution //2 )
z0 = tf.concat ( ( tf.concat ( ( tf.ones ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z0 = tf.tile ( z0, tile_cfg )
z1 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.ones ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z1 = tf.tile ( z1, tile_cfg )
z2 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.ones ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z2 = tf.tile ( z2, tile_cfg )
z3 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.ones ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z3 = tf.tile ( z3, tile_cfg )
x = x0*z0 + x1*z1 + x2*z2 + x3*z3
x = tf.nn.sigmoid( nn.depth_to_space(tf.concat( (self.out_conv(x),
self.out_conv1(x),
self.out_conv2(x),
self.out_conv3(x)), nn.conv2d_ch_axis), 2) )
else:
x = tf.nn.sigmoid(self.out_conv(x))
@ -201,9 +182,13 @@ class DeepFakeArchi(nn.ArchiBase):
if 'd' in opts:
m = self.upscalem3(m)
m = tf.nn.sigmoid(self.out_convm(m))
if use_fp16:
x = tf.cast(x, tf.float32)
m = tf.cast(m, tf.float32)
return x, m
self.Encoder = Encoder
self.Inter = Inter
self.Decoder = Decoder

View file

@ -55,8 +55,8 @@ class Conv2D(nn.LayerBase):
if kernel_initializer is None:
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
if kernel_initializer is None:
kernel_initializer = nn.initializers.ca()
#if kernel_initializer is None:
# kernel_initializer = nn.initializers.ca()
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.out_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )

View file

@ -38,8 +38,8 @@ class Conv2DTranspose(nn.LayerBase):
if kernel_initializer is None:
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
if kernel_initializer is None:
kernel_initializer = nn.initializers.ca()
#if kernel_initializer is None:
# kernel_initializer = nn.initializers.ca()
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.out_ch,self.in_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )
if self.use_bias:

View file

@ -68,8 +68,8 @@ class DepthwiseConv2D(nn.LayerBase):
if kernel_initializer is None:
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
if kernel_initializer is None:
kernel_initializer = nn.initializers.ca()
#if kernel_initializer is None:
# kernel_initializer = nn.initializers.ca()
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.depth_multiplier), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )

View file

@ -111,7 +111,7 @@ class UNetPatchDiscriminator(nn.ModelBase):
for i in range(layers_count-1):
st = 1 + (1 if val & (1 << i) !=0 else 0 )
layers.append ( [3, st ])
sum_st += st
sum_st += st
rf = self.calc_receptive_field_size(layers)
@ -130,12 +130,14 @@ class UNetPatchDiscriminator(nn.ModelBase):
q=x[np.abs(np.array(x)-target_patch_size).argmin()]
return s[q][2]
def on_build(self, patch_size, in_ch, base_ch = 16):
def on_build(self, patch_size, in_ch, base_ch = 16, use_fp16 = False):
self.use_fp16 = use_fp16
conv_dtype = tf.float16 if use_fp16 else tf.float32
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, inp):
x = self.conv1(inp)
@ -146,52 +148,47 @@ class UNetPatchDiscriminator(nn.ModelBase):
prev_ch = in_ch
self.convs = []
self.res1 = []
self.res2 = []
self.upconvs = []
self.upres1 = []
self.upres2 = []
layers = self.find_archi(patch_size)
level_chs = { i-1:v for i,v in enumerate([ min( base_ch * (2**i), 512 ) for i in range(len(layers)+1)]) }
self.in_conv = nn.Conv2D( in_ch, level_chs[-1], kernel_size=1, padding='VALID')
self.in_conv = nn.Conv2D( in_ch, level_chs[-1], kernel_size=1, padding='VALID', dtype=conv_dtype)
for i, (kernel_size, strides) in enumerate(layers):
self.convs.append ( nn.Conv2D( level_chs[i-1], level_chs[i], kernel_size=kernel_size, strides=strides, padding='SAME') )
self.convs.append ( nn.Conv2D( level_chs[i-1], level_chs[i], kernel_size=kernel_size, strides=strides, padding='SAME', dtype=conv_dtype) )
self.res1.append ( ResidualBlock(level_chs[i]) )
self.res2.append ( ResidualBlock(level_chs[i]) )
self.upconvs.insert (0, nn.Conv2DTranspose( level_chs[i]*(2 if i != len(layers)-1 else 1), level_chs[i-1], kernel_size=kernel_size, strides=strides, padding='SAME', dtype=conv_dtype) )
self.upconvs.insert (0, nn.Conv2DTranspose( level_chs[i]*(2 if i != len(layers)-1 else 1), level_chs[i-1], kernel_size=kernel_size, strides=strides, padding='SAME') )
self.out_conv = nn.Conv2D( level_chs[-1]*2, 1, kernel_size=1, padding='VALID', dtype=conv_dtype)
self.upres1.insert (0, ResidualBlock(level_chs[i-1]*2) )
self.upres2.insert (0, ResidualBlock(level_chs[i-1]*2) )
self.out_conv = nn.Conv2D( level_chs[-1]*2, 1, kernel_size=1, padding='VALID')
self.center_out = nn.Conv2D( level_chs[len(layers)-1], 1, kernel_size=1, padding='VALID')
self.center_conv = nn.Conv2D( level_chs[len(layers)-1], level_chs[len(layers)-1], kernel_size=1, padding='VALID')
self.center_out = nn.Conv2D( level_chs[len(layers)-1], 1, kernel_size=1, padding='VALID', dtype=conv_dtype)
self.center_conv = nn.Conv2D( level_chs[len(layers)-1], level_chs[len(layers)-1], kernel_size=1, padding='VALID', dtype=conv_dtype)
def forward(self, x):
if self.use_fp16:
x = tf.cast(x, tf.float16)
x = tf.nn.leaky_relu( self.in_conv(x), 0.2 )
encs = []
for conv, res1,res2 in zip(self.convs, self.res1, self.res2):
for conv in self.convs:
encs.insert(0, x)
x = tf.nn.leaky_relu( conv(x), 0.2 )
x = res1(x)
x = res2(x)
center_out, x = self.center_out(x), tf.nn.leaky_relu( self.center_conv(x), 0.2 )
for i, (upconv, enc, upres1, upres2 ) in enumerate(zip(self.upconvs, encs, self.upres1, self.upres2)):
for i, (upconv, enc) in enumerate(zip(self.upconvs, encs)):
x = tf.nn.leaky_relu( upconv(x), 0.2 )
x = tf.concat( [enc, x], axis=nn.conv2d_ch_axis)
x = upres1(x)
x = upres2(x)
return center_out, self.out_conv(x)
x = self.out_conv(x)
if self.use_fp16:
center_out = tf.cast(center_out, tf.float32)
x = tf.cast(x, tf.float32)
return center_out, x
nn.UNetPatchDiscriminator = UNetPatchDiscriminator

View file

@ -50,11 +50,11 @@ class AdaBelief(nn.OptimizerBase):
updates = []
if self.clipnorm > 0.0:
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(g)) for g,v in grads_vars]))
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(tf.cast(g, tf.float32))) for g,v in grads_vars]))
updates += [ state_ops.assign_add( self.iterations, 1) ]
for i, (g,v) in enumerate(grads_vars):
if self.clipnorm > 0.0:
g = self.tf_clip_norm(g, self.clipnorm, norm)
g = self.tf_clip_norm(g, self.clipnorm, tf.cast(norm, g.dtype) )
ms = self.ms_dict[ v.name ]
vs = self.vs_dict[ v.name ]

View file

@ -47,11 +47,11 @@ class RMSprop(nn.OptimizerBase):
updates = []
if self.clipnorm > 0.0:
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(g)) for g,v in grads_vars]))
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(tf.cast(g, tf.float32))) for g,v in grads_vars]))
updates += [ state_ops.assign_add( self.iterations, 1) ]
for i, (g,v) in enumerate(grads_vars):
if self.clipnorm > 0.0:
g = self.tf_clip_norm(g, self.clipnorm, norm)
g = self.tf_clip_norm(g, self.clipnorm, tf.cast(norm, g.dtype) )
a = self.accumulators_dict[ v.name ]

53
main.py
View file

@ -23,7 +23,7 @@ if __name__ == "__main__":
setattr(namespace, self.dest, os.path.abspath(os.path.expanduser(values)))
exit_code = 0
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers()
@ -52,9 +52,9 @@ if __name__ == "__main__":
p.add_argument('--output-debug', action="store_true", dest="output_debug", default=None, help="Writes debug images to <output-dir>_debug\ directory.")
p.add_argument('--no-output-debug', action="store_false", dest="output_debug", default=None, help="Don't writes debug images to <output-dir>_debug\ directory.")
p.add_argument('--face-type', dest="face_type", choices=['half_face', 'full_face', 'whole_face', 'head', 'mark_only'], default=None)
p.add_argument('--max-faces-from-image', type=int, dest="max_faces_from_image", default=None, help="Max faces from image.")
p.add_argument('--max-faces-from-image', type=int, dest="max_faces_from_image", default=None, help="Max faces from image.")
p.add_argument('--image-size', type=int, dest="image_size", default=None, help="Output image size.")
p.add_argument('--jpeg-quality', type=int, dest="jpeg_quality", default=None, help="Jpeg quality.")
p.add_argument('--jpeg-quality', type=int, dest="jpeg_quality", default=None, help="Jpeg quality.")
p.add_argument('--manual-fix', action="store_true", dest="manual_fix", default=False, help="Enables manual extract only frames where faces were not recognized.")
p.add_argument('--manual-output-debug-fix', action="store_true", dest="manual_output_debug_fix", default=False, help="Performs manual reextract input-dir frames which were deleted from [output_dir]_debug\ dir.")
p.add_argument('--manual-window-size', type=int, dest="manual_window_size", default=1368, help="Manual fix window size. Default: 1368.")
@ -127,7 +127,6 @@ if __name__ == "__main__":
'silent_start' : arguments.silent_start,
'execute_programs' : [ [int(x[0]), x[1] ] for x in arguments.execute_program ],
'debug' : arguments.debug,
'dump_ckpt' : arguments.dump_ckpt,
}
from mainscripts import Trainer
Trainer.main(**kwargs)
@ -145,11 +144,19 @@ if __name__ == "__main__":
p.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Train on CPU.")
p.add_argument('--force-gpu-idxs', dest="force_gpu_idxs", default=None, help="Force to choose GPU indexes separated by comma.")
p.add_argument('--silent-start', action="store_true", dest="silent_start", default=False, help="Silent start. Automatically chooses Best GPU and last used model.")
p.add_argument('--dump-ckpt', action="store_true", dest="dump_ckpt", default=False, help="Dump the model to ckpt format.")
p.add_argument('--execute-program', dest="execute_program", default=[], action='append', nargs='+')
p.set_defaults (func=process_train)
def process_exportdfm(arguments):
osex.set_process_lowest_prio()
from mainscripts import ExportDFM
ExportDFM.main(model_class_name = arguments.model_name, saved_models_path = Path(arguments.model_dir))
p = subparsers.add_parser( "exportdfm", help="Export model to use in DeepFaceLive.")
p.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir", help="Saved models dir.")
p.add_argument('--model', required=True, dest="model_name", choices=pathex.get_all_dir_names_startswith ( Path(__file__).parent / 'models' , 'Model_'), help="Model class name.")
p.set_defaults (func=process_exportdfm)
def process_merge(arguments):
osex.set_process_lowest_prio()
@ -254,8 +261,8 @@ if __name__ == "__main__":
p.add_argument('--force-gpu-idxs', dest="force_gpu_idxs", default=None, help="Force to choose GPU indexes separated by comma.")
p.set_defaults(func=process_faceset_enhancer)
p = facesettool_parser.add_parser ("resize", help="Resize DFL faceset.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory of aligned faces.")
@ -264,7 +271,7 @@ if __name__ == "__main__":
from mainscripts import FacesetResizer
FacesetResizer.process_folder ( Path(arguments.input_dir) )
p.set_defaults(func=process_faceset_resizer)
def process_dev_test(arguments):
osex.set_process_lowest_prio()
from mainscripts import dev_misc
@ -273,10 +280,10 @@ if __name__ == "__main__":
p = subparsers.add_parser( "dev_test", help="")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
p.set_defaults (func=process_dev_test)
# ========== XSeg
xseg_parser = subparsers.add_parser( "xseg", help="XSeg tools.").add_subparsers()
p = xseg_parser.add_parser( "editor", help="XSeg editor.")
def process_xsegeditor(arguments):
@ -284,11 +291,11 @@ if __name__ == "__main__":
from XSegEditor import XSegEditor
global exit_code
exit_code = XSegEditor.start (Path(arguments.input_dir))
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
p.set_defaults (func=process_xsegeditor)
p = xseg_parser.add_parser( "apply", help="Apply trained XSeg model to the extracted faces.")
def process_xsegapply(arguments):
@ -298,8 +305,8 @@ if __name__ == "__main__":
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
p.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir")
p.set_defaults (func=process_xsegapply)
p = xseg_parser.add_parser( "remove", help="Remove applied XSeg masks from the extracted faces.")
def process_xsegremove(arguments):
osex.set_process_lowest_prio()
@ -307,8 +314,8 @@ if __name__ == "__main__":
XSegUtil.remove_xseg (Path(arguments.input_dir) )
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
p.set_defaults (func=process_xsegremove)
p = xseg_parser.add_parser( "remove_labels", help="Remove XSeg labels from the extracted faces.")
def process_xsegremovelabels(arguments):
osex.set_process_lowest_prio()
@ -316,8 +323,8 @@ if __name__ == "__main__":
XSegUtil.remove_xseg_labels (Path(arguments.input_dir) )
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
p.set_defaults (func=process_xsegremovelabels)
p = xseg_parser.add_parser( "fetch", help="Copies faces containing XSeg polygons in <input_dir>_xseg dir.")
def process_xsegfetch(arguments):
@ -326,7 +333,7 @@ if __name__ == "__main__":
XSegUtil.fetch_xseg (Path(arguments.input_dir) )
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
p.set_defaults (func=process_xsegfetch)
def bad_args(arguments):
parser.print_help()
exit(0)
@ -337,9 +344,9 @@ if __name__ == "__main__":
if exit_code == 0:
print ("Done.")
exit(exit_code)
'''
import code
code.interact(local=dict(globals(), **locals()))

22
mainscripts/ExportDFM.py Normal file
View file

@ -0,0 +1,22 @@
import os
import sys
import traceback
import queue
import threading
import time
import numpy as np
import itertools
from pathlib import Path
from core import pathex
from core import imagelib
import cv2
import models
from core.interact import interact as io
def main(model_class_name, saved_models_path):
model = models.import_model(model_class_name)(
is_exporting=True,
saved_models_path=saved_models_path,
cpu_only=True)
model.export_dfm ()

View file

@ -79,79 +79,79 @@ class FacesetResizerSubprocessor(Subprocessor):
h,w = img.shape[:2]
if h != w:
raise Exception(f'w != h in {filepath}')
image_size = self.image_size
face_type = self.face_type
output_filepath = self.output_dirpath / filepath.name
if face_type is not None:
lmrks = dflimg.get_landmarks()
mat = LandmarksProcessor.get_transform_mat(lmrks, image_size, face_type)
img = cv2.warpAffine(img, mat, (image_size, image_size), flags=cv2.INTER_LANCZOS4 )
img = np.clip(img, 0, 255).astype(np.uint8)
cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] )
dfl_dict = dflimg.get_dict()
dflimg = DFLIMG.load (output_filepath)
dflimg.set_dict(dfl_dict)
xseg_mask = dflimg.get_xseg_mask()
if xseg_mask is not None:
xseg_res = 256
xseg_lmrks = lmrks.copy()
xseg_lmrks *= (xseg_res / w)
xseg_mat = LandmarksProcessor.get_transform_mat(xseg_lmrks, xseg_res, face_type)
xseg_mask = cv2.warpAffine(xseg_mask, xseg_mat, (xseg_res, xseg_res), flags=cv2.INTER_LANCZOS4 )
xseg_mask[xseg_mask < 0.5] = 0
xseg_mask[xseg_mask >= 0.5] = 1
dflimg.set_xseg_mask(xseg_mask)
seg_ie_polys = dflimg.get_seg_ie_polys()
for poly in seg_ie_polys.get_polys():
poly_pts = poly.get_pts()
poly_pts = LandmarksProcessor.transform_points(poly_pts, mat)
poly.set_points(poly_pts)
dflimg.set_seg_ie_polys(seg_ie_polys)
lmrks = LandmarksProcessor.transform_points(lmrks, mat)
dflimg.set_landmarks(lmrks)
image_to_face_mat = dflimg.get_image_to_face_mat()
if image_to_face_mat is not None:
image_to_face_mat = LandmarksProcessor.get_transform_mat ( dflimg.get_source_landmarks(), image_size, face_type )
dflimg.set_image_to_face_mat(image_to_face_mat)
dflimg.set_face_type( FaceType.toString(face_type) )
dflimg.save()
else:
dfl_dict = dflimg.get_dict()
scale = w / image_size
img = cv2.resize(img, (image_size, image_size), interpolation=cv2.INTER_LANCZOS4)
img = cv2.resize(img, (image_size, image_size), interpolation=cv2.INTER_LANCZOS4)
cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] )
dflimg = DFLIMG.load (output_filepath)
dflimg.set_dict(dfl_dict)
lmrks = dflimg.get_landmarks()
lmrks = dflimg.get_landmarks()
lmrks /= scale
dflimg.set_landmarks(lmrks)
seg_ie_polys = dflimg.get_seg_ie_polys()
seg_ie_polys.mult_points( 1.0 / scale)
dflimg.set_seg_ie_polys(seg_ie_polys)
image_to_face_mat = dflimg.get_image_to_face_mat()
if image_to_face_mat is not None:
face_type = FaceType.fromString ( dflimg.get_face_type() )
image_to_face_mat = LandmarksProcessor.get_transform_mat ( dflimg.get_source_landmarks(), image_size, face_type )
@ -165,9 +165,9 @@ class FacesetResizerSubprocessor(Subprocessor):
return (0, filepath, None)
def process_folder ( dirpath):
image_size = io.input_int(f"New image size", 512, valid_range=[256,2048])
image_size = io.input_int(f"New image size", 512, valid_range=[128,2048])
face_type = io.input_str ("Change face type", 'same', ['h','mf','f','wf','head','same']).lower()
if face_type == 'same':
face_type = None
@ -177,7 +177,7 @@ def process_folder ( dirpath):
'f' : FaceType.FULL,
'wf' : FaceType.WHOLE_FACE,
'head' : FaceType.HEAD}[face_type]
output_dirpath = dirpath.parent / (dirpath.name + '_resized')
output_dirpath.mkdir (exist_ok=True, parents=True)

View file

@ -49,6 +49,7 @@ def main (model_class_name=None,
model = models.import_model(model_class_name)(is_training=False,
saved_models_path=saved_models_path,
force_gpu_idxs=force_gpu_idxs,
force_model_name=force_model_name,
cpu_only=cpu_only)
predictor_func, predictor_input_shape, cfg = model.get_MergerConfig()

View file

@ -27,7 +27,6 @@ def trainerThread (s2c, c2s, e,
silent_start=False,
execute_programs = None,
debug=False,
dump_ckpt=False,
**kwargs):
while True:
try:
@ -43,12 +42,9 @@ def trainerThread (s2c, c2s, e,
if not saved_models_path.exists():
saved_models_path.mkdir(exist_ok=True, parents=True)
if dump_ckpt:
cpu_only=True
model = models.import_model(model_class_name)(
is_training=not dump_ckpt,
is_training=True,
saved_models_path=saved_models_path,
training_data_src_path=training_data_src_path,
training_data_dst_path=training_data_dst_path,
@ -61,11 +57,6 @@ def trainerThread (s2c, c2s, e,
silent_start=silent_start,
debug=debug)
if dump_ckpt:
e.set()
model.dump_ckpt()
break
is_reached_goal = model.is_reached_iter_goal()
shared_state = { 'after_save' : False }
@ -76,10 +67,10 @@ def trainerThread (s2c, c2s, e,
io.log_info ("Saving....", end='\r')
model.save()
shared_state['after_save'] = True
def model_backup():
if not debug and not is_reached_goal:
model.create_backup()
model.create_backup()
def send_preview():
if not debug:
@ -128,7 +119,7 @@ def trainerThread (s2c, c2s, e,
io.log_info("")
io.log_info("Trying to do the first iteration. If an error occurs, reduce the model parameters.")
io.log_info("")
if sys.platform[0:3] == 'win':
io.log_info("!!!")
io.log_info("Windows 10 users IMPORTANT notice. You should set this setting in order to work correctly.")
@ -146,7 +137,7 @@ def trainerThread (s2c, c2s, e,
if shared_state['after_save']:
shared_state['after_save'] = False
mean_loss = np.mean ( loss_history[save_iter:iter], axis=0)
for loss_value in mean_loss:

View file

@ -22,6 +22,7 @@ from samplelib import SampleGeneratorBase
class ModelBase(object):
def __init__(self, is_training=False,
is_exporting=False,
saved_models_path=None,
training_data_src_path=None,
training_data_dst_path=None,
@ -36,6 +37,7 @@ class ModelBase(object):
silent_start=False,
**kwargs):
self.is_training = is_training
self.is_exporting = is_exporting
self.saved_models_path = saved_models_path
self.training_data_src_path = training_data_src_path
self.training_data_dst_path = training_data_dst_path
@ -232,7 +234,7 @@ class ModelBase(object):
preview_id_counter = 0
while not choosed:
self.sample_for_preview = self.generate_next_samples()
previews = self.get_static_previews()
previews = self.get_history_previews()
io.show_image( wnd_name, ( previews[preview_id_counter % len(previews) ][1] *255).astype(np.uint8) )
@ -258,7 +260,7 @@ class ModelBase(object):
self.sample_for_preview = self.generate_next_samples()
try:
self.get_static_previews()
self.get_history_previews()
except:
self.sample_for_preview = self.generate_next_samples()
@ -347,7 +349,7 @@ class ModelBase(object):
return ( ('loss_src', 0), ('loss_dst', 0) )
#overridable
def onGetPreview(self, sample):
def onGetPreview(self, sample, for_history=False):
#you can return multiple previews
#return [ ('preview_name',preview_rgb), ... ]
return []
@ -377,8 +379,8 @@ class ModelBase(object):
def get_previews(self):
return self.onGetPreview ( self.last_sample )
def get_static_previews(self):
return self.onGetPreview (self.sample_for_preview)
def get_history_previews(self):
return self.onGetPreview (self.sample_for_preview, for_history=True)
def get_preview_history_writer(self):
if self.preview_history_writer is None:
@ -484,7 +486,7 @@ class ModelBase(object):
plist += [ (bgr, self.get_strpath_storage_for_file('preview_%s.jpg' % (name) ) ) ]
if self.write_preview_history:
previews = self.get_static_previews()
previews = self.get_history_previews()
for i in range(len(previews)):
name, bgr = previews[i]
path = self.preview_history_path / name

View file

@ -18,41 +18,26 @@ class AMPModel(ModelBase):
def on_initialize_options(self):
device_config = nn.getCurrentDeviceConfig()
lowest_vram = 2
if len(device_config.devices) != 0:
lowest_vram = device_config.devices.get_worst_device().total_mem_gb
if lowest_vram >= 4:
suggest_batch_size = 8
else:
suggest_batch_size = 4
yn_str = {True:'y',False:'n'}
min_res = 64
max_res = 640
default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 224)
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True)
default_ae_dims = self.options['ae_dims'] = self.load_or_def_option('ae_dims', 256)
inter_dims = self.load_or_def_option('inter_dims', None)
if inter_dims is None:
inter_dims = self.options['ae_dims']
default_inter_dims = self.options['inter_dims'] = inter_dims
default_e_dims = self.options['e_dims'] = self.load_or_def_option('e_dims', 64)
default_d_dims = self.options['d_dims'] = self.options.get('d_dims', None)
default_d_mask_dims = self.options['d_mask_dims'] = self.options.get('d_mask_dims', None)
default_morph_factor = self.options['morph_factor'] = self.options.get('morph_factor', 0.33)
default_masked_training = self.options['masked_training'] = self.load_or_def_option('masked_training', True)
default_eyes_mouth_prio = self.options['eyes_mouth_prio'] = self.load_or_def_option('eyes_mouth_prio', True)
default_morph_factor = self.options['morph_factor'] = self.options.get('morph_factor', 0.5)
default_uniform_yaw = self.options['uniform_yaw'] = self.load_or_def_option('uniform_yaw', False)
lr_dropout = self.load_or_def_option('lr_dropout', 'n')
lr_dropout = {True:'y', False:'n'}.get(lr_dropout, lr_dropout) #backward comp
default_lr_dropout = self.options['lr_dropout'] = lr_dropout
default_random_warp = self.options['random_warp'] = self.load_or_def_option('random_warp', True)
default_ct_mode = self.options['ct_mode'] = self.load_or_def_option('ct_mode', 'none')
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
ask_override = self.ask_override()
if self.is_first_run() or ask_override:
@ -61,13 +46,13 @@ class AMPModel(ModelBase):
self.ask_target_iter()
self.ask_random_src_flip()
self.ask_random_dst_flip()
self.ask_batch_size(suggest_batch_size)
self.ask_batch_size(8)
if self.is_first_run():
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 32 .")
resolution = np.clip ( (resolution // 32) * 32, min_res, max_res)
resolution = np.clip ( (resolution // 32) * 32, 64, 640)
self.options['resolution'] = resolution
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['wf','head'], help_message="whole face / head").lower()
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['f','wf','head'], help_message="whole face / head").lower()
default_d_dims = self.options['d_dims'] = self.load_or_def_option('d_dims', 64)
@ -77,7 +62,8 @@ class AMPModel(ModelBase):
default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims)
if self.is_first_run():
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
self.options['inter_dims'] = np.clip ( io.input_int("Inter dimensions", default_inter_dims, add_info="32-2048", help_message="Should be equal or more than AutoEncoder dimensions. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 2048 )
e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
self.options['e_dims'] = e_dims + e_dims % 2
@ -88,15 +74,10 @@ class AMPModel(ModelBase):
d_mask_dims = np.clip ( io.input_int("Decoder mask dimensions", default_d_mask_dims, add_info="16-256", help_message="Typical mask dimensions = decoder dimensions / 3. If you manually cut out obstacles from the dst mask, you can increase this parameter to achieve better quality." ), 16, 256 )
self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2
morph_factor = np.clip ( io.input_number ("Morph factor.", default_morph_factor, add_info="0.1 .. 0.5", help_message="The smaller the value, the more src-like facial expressions will appear. The larger the value, the less space there is to train a large dst faceset in the neural network. Typical fine value is 0.33"), 0.1, 0.5 )
morph_factor = np.clip ( io.input_number ("Morph factor.", default_morph_factor, add_info="0.1 .. 0.5", help_message="Typical fine value is 0.5"), 0.1, 0.5 )
self.options['morph_factor'] = morph_factor
if self.is_first_run() or ask_override:
if self.options['face_type'] == 'wf' or self.options['face_type'] == 'head':
self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' or 'head' type. Masked training clips training area to full_face mask or XSeg mask, thus network will train the faces properly.")
self.options['eyes_mouth_prio'] = io.input_bool ("Eyes and mouth priority", default_eyes_mouth_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction. Also makes the detail of the teeth higher.')
self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0)
@ -106,26 +87,21 @@ class AMPModel(ModelBase):
if self.is_first_run() or ask_override:
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
self.options['lr_dropout'] = io.input_str (f"Use learning rate dropout", default_lr_dropout, ['n','y','cpu'], help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. Enabled it before `disable random warp` and before GAN. \nn - disabled.\ny - enabled\ncpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration.")
self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.")
self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 1.0", help_message="Forces the neural network to learn small details of the face. Enable it only when the face is trained enough with lr_dropout(on) and random_warp(off), and don't disable. The higher the value, the higher the chances of artifacts. Typical fine value is 0.1"), 0.0, 1.0 )
self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 5.0", help_message="Forces the neural network to learn small details of the face. Enable it only when the face is trained enough with random_warp(off), and don't disable. The higher the value, the higher the chances of artifacts. Typical fine value is 0.1"), 0.0, 5.0 )
if self.options['gan_power'] != 0.0:
gan_patch_size = np.clip ( io.input_int("GAN patch size", default_gan_patch_size, add_info="3-640", help_message="The higher patch size, the higher the quality, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is resolution / 8." ), 3, 640 )
self.options['gan_patch_size'] = gan_patch_size
gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-64", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 64 )
gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-512", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 512 )
self.options['gan_dims'] = gan_dims
self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best.")
self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain, help_message="Pretrain the model with large amount of various faces. After that, model can be used to train the fakes more quickly. Forces random_warp=N, random_flips=Y, gan_power=0.0, lr_dropout=N, uniform_yaw=Y")
self.gan_model_changed = (default_gan_patch_size != self.options['gan_patch_size']) or (default_gan_dims != self.options['gan_dims'])
self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False)
#override
def on_initialize(self):
@ -135,42 +111,47 @@ class AMPModel(ModelBase):
nn.initialize(data_format=self.model_data_format)
tf = nn.tf
self.resolution = resolution = self.options['resolution']
input_ch=3
resolution = self.resolution = self.options['resolution']
e_dims = self.options['e_dims']
ae_dims = self.options['ae_dims']
inter_dims = self.inter_dims = self.options['inter_dims']
inter_res = self.inter_res = resolution // 32
d_dims = self.options['d_dims']
d_mask_dims = self.options['d_mask_dims']
face_type = self.face_type = {'f' : FaceType.FULL,
'wf' : FaceType.WHOLE_FACE,
'head' : FaceType.HEAD}[ self.options['face_type'] ]
morph_factor = self.options['morph_factor']
gan_power = self.gan_power = self.options['gan_power']
random_warp = self.options['random_warp']
lowest_dense_res = self.lowest_dense_res = resolution // 32
ct_mode = self.options['ct_mode']
if ct_mode == 'none':
ct_mode = None
use_fp16 = self.is_exporting
conv_dtype = tf.float16 if use_fp16 else tf.float32
class Downscale(nn.ModelBase):
def __init__(self, in_ch, out_ch, kernel_size=5, *kwargs ):
self.in_ch = in_ch
self.out_ch = out_ch
self.kernel_size = kernel_size
super().__init__(*kwargs)
def on_build(self, *args, **kwargs ):
self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME')
def on_build(self, in_ch, out_ch, kernel_size=5 ):
self.conv1 = nn.Conv2D( in_ch, out_ch, kernel_size=kernel_size, strides=2, padding='SAME', dtype=conv_dtype)
def forward(self, x):
x = self.conv1(x)
x = tf.nn.leaky_relu(x, 0.1)
return x
def get_out_ch(self):
return self.out_ch
return tf.nn.leaky_relu(self.conv1(x), 0.1)
class Upscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME')
self.conv1 = nn.Conv2D(in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, x):
x = self.conv1(x)
x = tf.nn.leaky_relu(x, 0.1)
x = nn.depth_to_space(x, 2)
x = nn.depth_to_space(tf.nn.leaky_relu(self.conv1(x), 0.1), 2)
return x
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, inp):
x = self.conv1(inp)
@ -180,18 +161,19 @@ class AMPModel(ModelBase):
return x
class Encoder(nn.ModelBase):
def on_build(self, in_ch, e_ch, ae_ch):
self.down1 = Downscale(in_ch, e_ch, kernel_size=5)
self.res1 = ResidualBlock(e_ch)
self.down2 = Downscale(e_ch, e_ch*2, kernel_size=5)
self.down3 = Downscale(e_ch*2, e_ch*4, kernel_size=5)
self.down4 = Downscale(e_ch*4, e_ch*8, kernel_size=5)
self.down5 = Downscale(e_ch*8, e_ch*8, kernel_size=5)
self.res5 = ResidualBlock(e_ch*8)
self.dense1 = nn.Dense( lowest_dense_res*lowest_dense_res*e_ch*8, ae_ch )
def on_build(self):
self.down1 = Downscale(input_ch, e_dims, kernel_size=5)
self.res1 = ResidualBlock(e_dims)
self.down2 = Downscale(e_dims, e_dims*2, kernel_size=5)
self.down3 = Downscale(e_dims*2, e_dims*4, kernel_size=5)
self.down4 = Downscale(e_dims*4, e_dims*8, kernel_size=5)
self.down5 = Downscale(e_dims*8, e_dims*8, kernel_size=5)
self.res5 = ResidualBlock(e_dims*8)
self.dense1 = nn.Dense( (( resolution//(2**5) )**2) * e_dims*8, ae_dims )
def forward(self, inp):
x = inp
def forward(self, x):
if use_fp16:
x = tf.cast(x, tf.float16)
x = self.down1(x)
x = self.res1(x)
x = self.down2(x)
@ -199,56 +181,51 @@ class AMPModel(ModelBase):
x = self.down4(x)
x = self.down5(x)
x = self.res5(x)
x = nn.flatten(x)
x = nn.pixel_norm(x, axes=-1)
if use_fp16:
x = tf.cast(x, tf.float32)
x = nn.pixel_norm(nn.flatten(x), axes=-1)
x = self.dense1(x)
return x
class Inter(nn.ModelBase):
def __init__(self, ae_ch, ae_out_ch, **kwargs):
self.ae_ch, self.ae_out_ch = ae_ch, ae_out_ch
super().__init__(**kwargs)
def on_build(self):
ae_ch, ae_out_ch = self.ae_ch, self.ae_out_ch
self.dense2 = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * ae_out_ch )
self.dense2 = nn.Dense(ae_dims, inter_res * inter_res * inter_dims)
def forward(self, inp):
x = inp
x = self.dense2(x)
x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch)
x = nn.reshape_4D (x, inter_res, inter_res, inter_dims)
return x
def get_out_ch(self):
return self.ae_out_ch
class Decoder(nn.ModelBase):
def on_build(self, in_ch, d_ch, d_mask_ch ):
self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3)
self.upscale1 = Upscale(d_ch*8, d_ch*8, kernel_size=3)
self.upscale2 = Upscale(d_ch*8, d_ch*4, kernel_size=3)
self.upscale3 = Upscale(d_ch*4, d_ch*2, kernel_size=3)
def on_build(self ):
self.upscale0 = Upscale(inter_dims, d_dims*8, kernel_size=3)
self.upscale1 = Upscale(d_dims*8, d_dims*8, kernel_size=3)
self.upscale2 = Upscale(d_dims*8, d_dims*4, kernel_size=3)
self.upscale3 = Upscale(d_dims*4, d_dims*2, kernel_size=3)
self.res0 = ResidualBlock(d_ch*8, kernel_size=3)
self.res1 = ResidualBlock(d_ch*8, kernel_size=3)
self.res2 = ResidualBlock(d_ch*4, kernel_size=3)
self.res3 = ResidualBlock(d_ch*2, kernel_size=3)
self.res0 = ResidualBlock(d_dims*8, kernel_size=3)
self.res1 = ResidualBlock(d_dims*8, kernel_size=3)
self.res2 = ResidualBlock(d_dims*4, kernel_size=3)
self.res3 = ResidualBlock(d_dims*2, kernel_size=3)
self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3)
self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*8, kernel_size=3)
self.upscalem2 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3)
self.upscalem3 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3)
self.upscalem4 = Upscale(d_mask_ch*2, d_mask_ch*1, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME')
self.upscalem0 = Upscale(inter_dims, d_mask_dims*8, kernel_size=3)
self.upscalem1 = Upscale(d_mask_dims*8, d_mask_dims*8, kernel_size=3)
self.upscalem2 = Upscale(d_mask_dims*8, d_mask_dims*4, kernel_size=3)
self.upscalem3 = Upscale(d_mask_dims*4, d_mask_dims*2, kernel_size=3)
self.upscalem4 = Upscale(d_mask_dims*2, d_mask_dims*1, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_dims*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME')
self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
self.out_conv = nn.Conv2D( d_dims*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype)
self.out_conv1 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv2 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv3 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
def forward(self, inp):
z = inp
def forward(self, z):
if use_fp16:
z = tf.cast(z, tf.float16)
x = self.upscale0(z)
x = self.res0(x)
@ -263,54 +240,22 @@ class AMPModel(ModelBase):
self.out_conv1(x),
self.out_conv2(x),
self.out_conv3(x)), nn.conv2d_ch_axis), 2) )
m = self.upscalem0(z)
m = self.upscalem1(m)
m = self.upscalem2(m)
m = self.upscalem3(m)
m = self.upscalem4(m)
m = tf.nn.sigmoid(self.out_convm(m))
if use_fp16:
x = tf.cast(x, tf.float32)
m = tf.cast(m, tf.float32)
return x, m
self.face_type = {'wf' : FaceType.WHOLE_FACE,
'head' : FaceType.HEAD}[ self.options['face_type'] ]
if 'eyes_prio' in self.options:
self.options.pop('eyes_prio')
eyes_mouth_prio = self.options['eyes_mouth_prio']
ae_dims = self.ae_dims = self.options['ae_dims']
e_dims = self.options['e_dims']
d_dims = self.options['d_dims']
d_mask_dims = self.options['d_mask_dims']
morph_factor = self.options['morph_factor']
pretrain = self.pretrain = self.options['pretrain']
if self.pretrain_just_disabled:
self.set_iter(0)
self.gan_power = gan_power = 0.0 if self.pretrain else self.options['gan_power']
random_warp = False if self.pretrain else self.options['random_warp']
random_src_flip = self.random_src_flip if not self.pretrain else True
random_dst_flip = self.random_dst_flip if not self.pretrain else True
if self.pretrain:
self.options_show_override['gan_power'] = 0.0
self.options_show_override['random_warp'] = False
self.options_show_override['lr_dropout'] = 'n'
self.options_show_override['uniform_yaw'] = True
masked_training = self.options['masked_training']
ct_mode = self.options['ct_mode']
if ct_mode == 'none':
ct_mode = None
models_opt_on_gpu = False if len(devices) == 0 else self.options['models_opt_on_gpu']
models_opt_device = nn.tf_default_device_name if models_opt_on_gpu and self.is_training else '/CPU:0'
optimizer_vars_on_cpu = models_opt_device=='/CPU:0'
input_ch=3
bgr_shape = self.bgr_shape = nn.get4Dshape(resolution,resolution,input_ch)
mask_shape = nn.get4Dshape(resolution,resolution,1)
self.model_filename_list = []
@ -331,12 +276,11 @@ class AMPModel(ModelBase):
self.morph_value_t = tf.placeholder (nn.floatx, (1,), name='morph_value_t')
# Initializing model classes
with tf.device (models_opt_device):
self.encoder = Encoder(in_ch=input_ch, e_ch=e_dims, ae_ch=ae_dims, name='encoder')
self.inter_src = Inter(ae_ch=ae_dims, ae_out_ch=ae_dims, name='inter_src')
self.inter_dst = Inter(ae_ch=ae_dims, ae_out_ch=ae_dims, name='inter_dst')
self.decoder = Decoder(in_ch=ae_dims, d_ch=d_dims, d_mask_ch=d_mask_dims, name='decoder')
self.encoder = Encoder(name='encoder')
self.inter_src = Inter(name='inter_src')
self.inter_dst = Inter(name='inter_dst')
self.decoder = Decoder(name='decoder')
self.model_filename_list += [ [self.encoder, 'encoder.npy'],
[self.inter_src, 'inter_src.npy'],
@ -344,30 +288,21 @@ class AMPModel(ModelBase):
[self.decoder , 'decoder.npy'] ]
if self.is_training:
if gan_power != 0:
self.GAN = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], name="GAN")
self.model_filename_list += [ [self.GAN, 'GAN.npy'] ]
# Initialize optimizers
lr=5e-5
lr_dropout = 0.3 if self.options['lr_dropout'] in ['y','cpu'] and not self.pretrain else 1.0
clipnorm = 1.0 if self.options['clipgrad'] else 0.0
self.all_weights = self.encoder.get_weights() + self.inter_src.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights()
if pretrain:
self.trainable_weights = self.encoder.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights()
else:
self.trainable_weights = self.encoder.get_weights() + self.inter_src.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights()
self.all_weights = self.encoder.get_weights() + self.decoder.get_weights()
self.src_dst_opt = nn.AdaBelief(lr=lr, lr_dropout=lr_dropout, clipnorm=clipnorm, name='src_dst_opt')
self.src_dst_opt.initialize_variables (self.all_weights, vars_on_cpu=optimizer_vars_on_cpu, lr_dropout_on_cpu=self.options['lr_dropout']=='cpu')
self.src_dst_opt = nn.AdaBelief(lr=5e-5, lr_dropout=0.3, clipnorm=clipnorm, name='src_dst_opt')
self.src_dst_opt.initialize_variables (self.all_weights, vars_on_cpu=optimizer_vars_on_cpu)
self.model_filename_list += [ (self.src_dst_opt, 'src_dst_opt.npy') ]
if gan_power != 0:
self.GAN_opt = nn.AdaBelief(lr=lr, lr_dropout=lr_dropout, clipnorm=clipnorm, name='GAN_opt')
self.GAN_opt.initialize_variables ( self.GAN.get_weights(), vars_on_cpu=optimizer_vars_on_cpu, lr_dropout_on_cpu=self.options['lr_dropout']=='cpu')#+self.D_src_x2.get_weights()
self.model_filename_list += [ (self.GAN_opt, 'GAN_opt.npy') ]
self.GAN = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], name="GAN")
self.GAN_opt = nn.AdaBelief(lr=5e-5, lr_dropout=0.3, clipnorm=clipnorm, name='GAN_opt')
self.GAN_opt.initialize_variables ( self.GAN.get_weights(), vars_on_cpu=optimizer_vars_on_cpu)
self.model_filename_list += [ [self.GAN, 'GAN.npy'],
[self.GAN_opt, 'GAN_opt.npy'] ]
if self.is_training:
# Adjust batch size for multiple GPU
@ -385,10 +320,8 @@ class AMPModel(ModelBase):
gpu_src_losses = []
gpu_dst_losses = []
gpu_G_loss_gvs = []
gpu_GAN_loss_gvs = []
gpu_D_code_loss_gvs = []
gpu_D_src_dst_loss_gvs = []
gpu_G_loss_gradients = []
gpu_GAN_loss_grads = []
for gpu_id in range(gpu_count):
with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
@ -408,86 +341,66 @@ class AMPModel(ModelBase):
gpu_src_code = self.encoder (gpu_warped_src)
gpu_dst_code = self.encoder (gpu_warped_dst)
if pretrain:
gpu_src_inter_src_code = self.inter_src (gpu_src_code)
gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code)
gpu_src_code = gpu_src_inter_src_code * nn.random_binomial( [bs_per_gpu, gpu_src_inter_src_code.shape.as_list()[1], 1,1] , p=morph_factor)
gpu_dst_code = gpu_src_dst_code = gpu_dst_inter_dst_code * nn.random_binomial( [bs_per_gpu, gpu_dst_inter_dst_code.shape.as_list()[1], 1,1] , p=0.25)
else:
gpu_src_inter_src_code = self.inter_src (gpu_src_code)
gpu_src_inter_dst_code = self.inter_dst (gpu_src_code)
gpu_dst_inter_src_code = self.inter_src (gpu_dst_code)
gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code)
gpu_src_inter_src_code, gpu_src_inter_dst_code = self.inter_src (gpu_src_code), self.inter_dst (gpu_src_code)
gpu_dst_inter_src_code, gpu_dst_inter_dst_code = self.inter_src (gpu_dst_code), self.inter_dst (gpu_dst_code)
inter_rnd_binomial = nn.random_binomial( [bs_per_gpu, gpu_src_inter_src_code.shape.as_list()[1], 1,1] , p=morph_factor)
gpu_src_code = gpu_src_inter_src_code * inter_rnd_binomial + gpu_src_inter_dst_code * (1-inter_rnd_binomial)
gpu_dst_code = gpu_dst_inter_dst_code
inter_rnd_binomial = nn.random_binomial( [bs_per_gpu, gpu_src_inter_src_code.shape.as_list()[1], 1,1] , p=morph_factor)
gpu_src_code = gpu_src_inter_src_code * inter_rnd_binomial + gpu_src_inter_dst_code * (1-inter_rnd_binomial)
gpu_dst_code = gpu_dst_inter_dst_code
ae_dims_slice = tf.cast(ae_dims*self.morph_value_t[0], tf.int32)
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, ae_dims_slice , lowest_dense_res, lowest_dense_res]),
tf.slice(gpu_dst_inter_dst_code, [0,ae_dims_slice,0,0], [-1,ae_dims-ae_dims_slice, lowest_dense_res,lowest_dense_res]) ), 1 )
inter_dims_slice = tf.cast(inter_dims*self.morph_value_t[0], tf.int32)
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , inter_res, inter_res]),
tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 )
gpu_pred_src_src, gpu_pred_src_srcm = self.decoder(gpu_src_code)
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code)
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
gpu_pred_src_src_list.append(gpu_pred_src_src)
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst)
gpu_pred_src_dst_list.append(gpu_pred_src_dst)
gpu_pred_src_src_list.append(gpu_pred_src_src), gpu_pred_src_srcm_list.append(gpu_pred_src_srcm)
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst), gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
gpu_pred_src_dst_list.append(gpu_pred_src_dst), gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
gpu_pred_src_srcm_list.append(gpu_pred_src_srcm)
gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
gpu_target_srcm_blur = tf.clip_by_value( nn.gaussian_blur(gpu_target_srcm, max(1, resolution // 32) ), 0, 0.5) * 2
gpu_target_dstm_blur = tf.clip_by_value(nn.gaussian_blur(gpu_target_dstm, max(1, resolution // 32) ), 0, 0.5) * 2
gpu_target_srcm_blur = nn.gaussian_blur(gpu_target_srcm, max(1, resolution // 32) )
gpu_target_srcm_blur = tf.clip_by_value(gpu_target_srcm_blur, 0, 0.5) * 2
gpu_target_srcm_anti_blur = 1.0-gpu_target_srcm_blur
gpu_target_dstm_anti_blur = 1.0-gpu_target_dstm_blur
gpu_target_dstm_blur = nn.gaussian_blur(gpu_target_dstm, max(1, resolution // 32) )
gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_blur, 0, 0.5) * 2
gpu_target_src_masked = gpu_target_src*gpu_target_srcm_blur
gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur
gpu_target_src_anti_masked = gpu_target_src*gpu_target_srcm_anti_blur
gpu_target_dst_anti_masked = gpu_target_dst*gpu_target_dstm_anti_blur
gpu_target_dst_anti_masked = gpu_target_dst*(1.0-gpu_target_dstm_blur)
gpu_target_src_anti_masked = gpu_target_src*(1.0-gpu_target_srcm_blur)
gpu_target_src_masked_opt = gpu_target_src*gpu_target_srcm_blur if masked_training else gpu_target_src
gpu_target_dst_masked_opt = gpu_target_dst*gpu_target_dstm_blur if masked_training else gpu_target_dst
gpu_pred_src_src_masked = gpu_pred_src_src*gpu_target_srcm_blur
gpu_pred_dst_dst_masked = gpu_pred_dst_dst*gpu_target_dstm_blur
gpu_pred_src_src_anti_masked = gpu_pred_src_src*gpu_target_srcm_anti_blur
gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*gpu_target_dstm_anti_blur
gpu_pred_src_src_masked_opt = gpu_pred_src_src*gpu_target_srcm_blur if masked_training else gpu_pred_src_src
gpu_pred_src_src_anti_masked = gpu_pred_src_src*(1.0-gpu_target_srcm_blur)
gpu_pred_dst_dst_masked_opt = gpu_pred_dst_dst*gpu_target_dstm_blur if masked_training else gpu_pred_dst_dst
gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*(1.0-gpu_target_dstm_blur)
# Structural loss
gpu_src_loss = tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_src_loss += tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
gpu_dst_loss = tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
gpu_dst_loss += tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1])
if resolution < 256:
gpu_dst_loss = tf.reduce_mean ( 10*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
else:
gpu_dst_loss = tf.reduce_mean ( 5*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
gpu_dst_loss += tf.reduce_mean ( 5*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1])
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dst_masked_opt- gpu_pred_dst_dst_masked_opt ), axis=[1,2,3])
if eyes_mouth_prio:
gpu_dst_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_dst*gpu_target_dstm_em - gpu_pred_dst_dst*gpu_target_dstm_em ), axis=[1,2,3])
# Pixel loss
gpu_src_loss += tf.reduce_mean (10*tf.square(gpu_target_src_masked-gpu_pred_src_src_masked), axis=[1,2,3])
gpu_dst_loss += tf.reduce_mean (10*tf.square(gpu_target_dst_masked-gpu_pred_dst_dst_masked), axis=[1,2,3])
# Eyes+mouth prio loss
gpu_src_loss += tf.reduce_mean (300*tf.abs (gpu_target_src*gpu_target_srcm_em-gpu_pred_src_src*gpu_target_srcm_em), axis=[1,2,3])
gpu_dst_loss += tf.reduce_mean (300*tf.abs (gpu_target_dst*gpu_target_dstm_em-gpu_pred_dst_dst*gpu_target_dstm_em), axis=[1,2,3])
# Mask loss
gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
gpu_dst_loss += 0.1*tf.reduce_mean(tf.square(gpu_pred_dst_dst_anti_masked-gpu_target_dst_anti_masked),axis=[1,2,3] )
gpu_dst_losses += [gpu_dst_loss]
if not pretrain:
if resolution < 256:
gpu_src_loss = tf.reduce_mean ( 10*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
else:
gpu_src_loss = tf.reduce_mean ( 5*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_src_loss += tf.reduce_mean ( 5*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_src_masked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3])
if eyes_mouth_prio:
gpu_src_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_src*gpu_target_srcm_em - gpu_pred_src_src*gpu_target_srcm_em ), axis=[1,2,3])
gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
else:
gpu_src_loss = gpu_dst_loss
# dst-dst background weak loss
gpu_dst_loss += tf.reduce_mean(0.1*tf.square(gpu_pred_dst_dst_anti_masked-gpu_target_dst_anti_masked),axis=[1,2,3] )
gpu_dst_loss += 0.000001*nn.total_variation_mse(gpu_pred_dst_dst_anti_masked)
gpu_src_losses += [gpu_src_loss]
if pretrain:
gpu_G_loss = gpu_dst_loss
else:
gpu_G_loss = gpu_src_loss + gpu_dst_loss
gpu_dst_losses += [gpu_dst_loss]
gpu_G_loss = gpu_src_loss + gpu_dst_loss
def DLossOnes(logits):
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(logits), logits=logits), axis=[1,2,3])
@ -496,30 +409,28 @@ class AMPModel(ModelBase):
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits), logits=logits), axis=[1,2,3])
if gan_power != 0:
gpu_pred_src_src_d, gpu_pred_src_src_d2 = self.GAN(gpu_pred_src_src_masked_opt)
gpu_pred_dst_dst_d, gpu_pred_dst_dst_d2 = self.GAN(gpu_pred_dst_dst_masked_opt)
gpu_target_src_d, gpu_target_src_d2 = self.GAN(gpu_target_src_masked_opt)
gpu_target_dst_d, gpu_target_dst_d2 = self.GAN(gpu_target_dst_masked_opt)
gpu_pred_src_src_d, gpu_pred_src_src_d2 = self.GAN(gpu_pred_src_src_masked)
gpu_pred_dst_dst_d, gpu_pred_dst_dst_d2 = self.GAN(gpu_pred_dst_dst_masked)
gpu_target_src_d, gpu_target_src_d2 = self.GAN(gpu_target_src_masked)
gpu_target_dst_d, gpu_target_dst_d2 = self.GAN(gpu_target_dst_masked)
gpu_D_src_dst_loss = (DLossOnes (gpu_target_src_d) + DLossOnes (gpu_target_src_d2) + \
DLossZeros(gpu_pred_src_src_d) + DLossZeros(gpu_pred_src_src_d2) + \
DLossOnes (gpu_target_dst_d) + DLossOnes (gpu_target_dst_d2) + \
DLossZeros(gpu_pred_dst_dst_d) + DLossZeros(gpu_pred_dst_dst_d2)
) * ( 1.0 / 8)
gpu_GAN_loss = (DLossOnes (gpu_target_src_d) + DLossOnes (gpu_target_src_d2) + \
DLossZeros(gpu_pred_src_src_d) + DLossZeros(gpu_pred_src_src_d2) + \
DLossOnes (gpu_target_dst_d) + DLossOnes (gpu_target_dst_d2) + \
DLossZeros(gpu_pred_dst_dst_d) + DLossZeros(gpu_pred_dst_dst_d2)
) * (1.0 / 8)
gpu_D_src_dst_loss_gvs += [ nn.gradients (gpu_D_src_dst_loss, self.GAN.get_weights() ) ]
gpu_GAN_loss_grads += [ nn.gradients (gpu_GAN_loss, self.GAN.get_weights() ) ]
gpu_G_loss += (DLossOnes(gpu_pred_src_src_d) + DLossOnes(gpu_pred_src_src_d2) + \
DLossOnes(gpu_pred_dst_dst_d) + DLossOnes(gpu_pred_dst_dst_d2)
) * gan_power
if masked_training:
# Minimal src-src-bg rec with total_variation_mse to suppress random bright dots from gan
gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_src_src)
gpu_G_loss += 0.02*tf.reduce_mean(tf.square(gpu_pred_src_src_anti_masked-gpu_target_src_anti_masked),axis=[1,2,3] )
gpu_G_loss_gvs += [ nn.gradients ( gpu_G_loss, self.trainable_weights ) ]
# Minimal src-src-bg rec with total_variation_mse to suppress random bright dots from gan
gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_src_src)
gpu_G_loss += 0.02*tf.reduce_mean(tf.square(gpu_pred_src_src_anti_masked-gpu_target_src_anti_masked),axis=[1,2,3] )
gpu_G_loss_gradients += [ nn.gradients ( gpu_G_loss, self.encoder.get_weights() + self.decoder.get_weights() ) ]
# Average losses and gradients, and create optimizer update ops
with tf.device(f'/CPU:0'):
@ -533,17 +444,15 @@ class AMPModel(ModelBase):
with tf.device (models_opt_device):
src_loss = tf.concat(gpu_src_losses, 0)
dst_loss = tf.concat(gpu_dst_losses, 0)
src_dst_loss_gv_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gvs))
train_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gradients))
if gan_power != 0:
src_D_src_dst_loss_gv_op = self.GAN_opt.get_update_op (nn.average_gv_list(gpu_D_src_dst_loss_gvs) )
#GAN_loss_gv_op = self.src_dst_opt.get_update_op (nn.average_gv_list(gpu_GAN_loss_gvs) )
GAN_train_op = self.GAN_opt.get_update_op (nn.average_gv_list(gpu_GAN_loss_grads) )
# Initializing training and view functions
def src_dst_train(warped_src, target_src, target_srcm, target_srcm_em, \
def train(warped_src, target_src, target_srcm, target_srcm_em, \
warped_dst, target_dst, target_dstm, target_dstm_em, ):
s, d, _ = nn.tf_sess.run ( [ src_loss, dst_loss, src_dst_loss_gv_op],
s, d, _ = nn.tf_sess.run ([src_loss, dst_loss, train_op],
feed_dict={self.warped_src :warped_src,
self.target_src :target_src,
self.target_srcm:target_srcm,
@ -554,21 +463,20 @@ class AMPModel(ModelBase):
self.target_dstm_em:target_dstm_em,
})
return s, d
self.src_dst_train = src_dst_train
self.train = train
if gan_power != 0:
def D_src_dst_train(warped_src, target_src, target_srcm, target_srcm_em, \
warped_dst, target_dst, target_dstm, target_dstm_em, ):
nn.tf_sess.run ([src_D_src_dst_loss_gv_op], feed_dict={self.warped_src :warped_src,
self.target_src :target_src,
self.target_srcm:target_srcm,
self.target_srcm_em:target_srcm_em,
self.warped_dst :warped_dst,
self.target_dst :target_dst,
self.target_dstm:target_dstm,
self.target_dstm_em:target_dstm_em})
self.D_src_dst_train = D_src_dst_train
def GAN_train(warped_src, target_src, target_srcm, target_srcm_em, \
warped_dst, target_dst, target_dstm, target_dstm_em, ):
nn.tf_sess.run ([GAN_train_op], feed_dict={self.warped_src :warped_src,
self.target_src :target_src,
self.target_srcm:target_srcm,
self.target_srcm_em:target_srcm_em,
self.warped_dst :warped_dst,
self.target_dst :target_dst,
self.target_dstm:target_dstm,
self.target_dstm_em:target_dstm_em})
self.GAN_train = GAN_train
def AE_view(warped_src, warped_dst, morph_value):
return nn.tf_sess.run ( [pred_src_src, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm],
@ -579,12 +487,12 @@ class AMPModel(ModelBase):
#Initializing merge function
with tf.device( nn.tf_default_device_name if len(devices) != 0 else f'/CPU:0'):
gpu_dst_code = self.encoder (self.warped_dst)
gpu_dst_inter_src_code = self.inter_src ( gpu_dst_code)
gpu_dst_inter_dst_code = self.inter_dst ( gpu_dst_code)
gpu_dst_inter_src_code = self.inter_src (gpu_dst_code)
gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code)
ae_dims_slice = tf.cast(ae_dims*self.morph_value_t[0], tf.int32)
gpu_src_dst_code = tf.concat( ( tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, ae_dims_slice , lowest_dense_res, lowest_dense_res]),
tf.slice(gpu_dst_inter_dst_code, [0,ae_dims_slice,0,0], [-1,ae_dims-ae_dims_slice, lowest_dense_res,lowest_dense_res]) ), 1 )
inter_dims_slice = tf.cast(inter_dims*self.morph_value_t[0], tf.int32)
gpu_src_dst_code = tf.concat( ( tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , inter_res, inter_res]),
tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 )
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
_, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code)
@ -596,31 +504,22 @@ class AMPModel(ModelBase):
# Loading/initializing all models/optimizers weights
for model, filename in io.progress_bar_generator(self.model_filename_list, "Initializing models"):
if self.pretrain_just_disabled:
do_init = False
if model == self.inter_src or model == self.inter_dst:
do_init = self.is_first_run()
if self.is_training and gan_power != 0 and model == self.GAN:
if self.gan_model_changed:
do_init = True
else:
do_init = self.is_first_run()
if self.is_training and gan_power != 0 and model == self.GAN:
if self.gan_model_changed:
do_init = True
if not do_init:
do_init = not model.load_weights( self.get_strpath_storage_for_file(filename) )
if do_init:
model.init_weights()
###############
# initializing sample generators
if self.is_training:
training_data_src_path = self.training_data_src_path if not self.pretrain else self.get_pretraining_data_path()
training_data_dst_path = self.training_data_dst_path if not self.pretrain else self.get_pretraining_data_path()
random_ct_samples_path=training_data_dst_path if ct_mode is not None and not self.pretrain else None
training_data_src_path = self.training_data_src_path #if not self.pretrain else self.get_pretraining_data_path()
training_data_dst_path = self.training_data_dst_path #if not self.pretrain else self.get_pretraining_data_path()
random_ct_samples_path=training_data_dst_path if ct_mode is not None else None #and not self.pretrain
cpu_count = min(multiprocessing.cpu_count(), 8)
src_generators_count = cpu_count // 2
@ -630,33 +529,34 @@ class AMPModel(ModelBase):
self.set_training_data_generators ([
SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=random_src_flip),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.EYES_MOUTH, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
sample_process_options=SampleProcessor.Options(random_flip=self.random_src_flip),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.EYES_MOUTH, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
uniform_yaw_distribution=self.options['uniform_yaw'] or self.pretrain,
uniform_yaw_distribution=self.options['uniform_yaw'],# or self.pretrain,
generators_count=src_generators_count ),
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=random_dst_flip),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.EYES_MOUTH, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
sample_process_options=SampleProcessor.Options(random_flip=self.random_dst_flip),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.EYES_MOUTH, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
uniform_yaw_distribution=self.options['uniform_yaw'] or self.pretrain,
uniform_yaw_distribution=self.options['uniform_yaw'],# or self.pretrain,
generators_count=dst_generators_count )
])
self.last_src_samples_loss = []
self.last_dst_samples_loss = []
if self.pretrain_just_disabled:
self.update_sample_for_preview(force_new=True)
def export_dfm (self):
output_path=self.get_strpath_storage_for_file('model.dfm')
io.log_info(f'Dumping .dfm to {output_path}')
def dump_ckpt(self):
tf = nn.tf
with tf.device (nn.tf_default_device_name):
warped_dst = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face')
@ -667,9 +567,9 @@ class AMPModel(ModelBase):
gpu_dst_inter_src_code = self.inter_src ( gpu_dst_code)
gpu_dst_inter_dst_code = self.inter_dst ( gpu_dst_code)
ae_dims_slice = tf.cast(self.ae_dims*morph_value[0], tf.int32)
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, ae_dims_slice , self.lowest_dense_res, self.lowest_dense_res]),
tf.slice(gpu_dst_inter_dst_code, [0,ae_dims_slice,0,0], [-1,self.ae_dims-ae_dims_slice, self.lowest_dense_res,self.lowest_dense_res]) ), 1 )
inter_dims_slice = tf.cast(self.inter_dims*morph_value[0], tf.int32)
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , self.inter_res, self.inter_res]),
tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,self.inter_dims-inter_dims_slice, self.inter_res,self.inter_res]) ), 1 )
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
_, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code)
@ -688,9 +588,15 @@ class AMPModel(ModelBase):
['out_face_mask','out_celeb_face','out_celeb_face_mask']
)
pb_filepath = self.get_strpath_storage_for_file('.pb')
with tf.gfile.GFile(pb_filepath, "wb") as f:
f.write(output_graph_def.SerializeToString())
import tf2onnx
with tf.device("/CPU:0"):
model_proto, _ = tf2onnx.convert._convert_common(
output_graph_def,
name='AMP',
input_names=['in_face:0','morph_value:0'],
output_names=['out_face_mask:0','out_celeb_face:0','out_celeb_face_mask:0'],
opset=13,
output_path=output_path)
#override
def get_model_filename_list(self):
@ -713,35 +619,37 @@ class AMPModel(ModelBase):
( (warped_src, target_src, target_srcm, target_srcm_em), \
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = self.generate_next_samples()
src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
src_loss, dst_loss = self.train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
for i in range(bs):
self.last_src_samples_loss.append ( (target_src[i], target_srcm[i], target_srcm_em[i], src_loss[i] ) )
self.last_dst_samples_loss.append ( (target_dst[i], target_dstm[i], target_dstm_em[i], dst_loss[i] ) )
self.last_src_samples_loss.append ( (src_loss[i], warped_src[i], target_src[i], target_srcm[i], target_srcm_em[i]) )
self.last_dst_samples_loss.append ( (dst_loss[i], warped_dst[i], target_dst[i], target_dstm[i], target_dstm_em[i]) )
if len(self.last_src_samples_loss) >= bs*16:
src_samples_loss = sorted(self.last_src_samples_loss, key=operator.itemgetter(3), reverse=True)
dst_samples_loss = sorted(self.last_dst_samples_loss, key=operator.itemgetter(3), reverse=True)
src_samples_loss = sorted(self.last_src_samples_loss, key=operator.itemgetter(0), reverse=True)
dst_samples_loss = sorted(self.last_dst_samples_loss, key=operator.itemgetter(0), reverse=True)
target_src = np.stack( [ x[0] for x in src_samples_loss[:bs] ] )
target_srcm = np.stack( [ x[1] for x in src_samples_loss[:bs] ] )
target_srcm_em = np.stack( [ x[2] for x in src_samples_loss[:bs] ] )
warped_src = np.stack( [ x[1] for x in src_samples_loss[:bs] ] )
target_src = np.stack( [ x[2] for x in src_samples_loss[:bs] ] )
target_srcm = np.stack( [ x[3] for x in src_samples_loss[:bs] ] )
target_srcm_em = np.stack( [ x[4] for x in src_samples_loss[:bs] ] )
target_dst = np.stack( [ x[0] for x in dst_samples_loss[:bs] ] )
target_dstm = np.stack( [ x[1] for x in dst_samples_loss[:bs] ] )
target_dstm_em = np.stack( [ x[2] for x in dst_samples_loss[:bs] ] )
warped_dst = np.stack( [ x[1] for x in dst_samples_loss[:bs] ] )
target_dst = np.stack( [ x[2] for x in dst_samples_loss[:bs] ] )
target_dstm = np.stack( [ x[3] for x in dst_samples_loss[:bs] ] )
target_dstm_em = np.stack( [ x[4] for x in dst_samples_loss[:bs] ] )
src_loss, dst_loss = self.src_dst_train (target_src, target_src, target_srcm, target_srcm_em, target_dst, target_dst, target_dstm, target_dstm_em)
src_loss, dst_loss = self.train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
self.last_src_samples_loss = []
self.last_dst_samples_loss = []
if self.gan_power != 0:
self.D_src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
self.GAN_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
#override
def onGetPreview(self, samples):
def onGetPreview(self, samples, for_history=False):
( (warped_src, target_src, target_srcm, target_srcm_em),
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
@ -771,18 +679,17 @@ class AMPModel(ModelBase):
result = []
i = np.random.randint(n_samples)
i = np.random.randint(n_samples) if not for_history else 0
st = [ np.concatenate ((S[i], D[i], DD[i]*DDM_000[i]), axis=1) ]
st += [ np.concatenate ((SS[i], DD[i], SD_075[i] ), axis=1) ]
st += [ np.concatenate ((SS[i], DD[i], SD_100[i] ), axis=1) ]
result += [ ('AMP morph 0.75', np.concatenate (st, axis=0 )), ]
result += [ ('AMP morph 1.0', np.concatenate (st, axis=0 )), ]
st = [ np.concatenate ((DD[i], SD_025[i], SD_050[i]), axis=1) ]
st += [ np.concatenate ((SD_065[i], SD_075[i], SD_100[i]), axis=1) ]
result += [ ('AMP morph list', np.concatenate (st, axis=0 )), ]
st = [ np.concatenate ((DD[i], SD_025[i]*DDM_025[i]*SDM_025[i], SD_050[i]*DDM_050[i]*SDM_050[i]), axis=1) ]
st += [ np.concatenate ((SD_065[i]*DDM_065[i]*SDM_065[i], SD_075[i]*DDM_075[i]*SDM_075[i], SD_100[i]*DDM_100[i]*SDM_100[i]), axis=1) ]
result += [ ('AMP morph list masked', np.concatenate (st, axis=0 )), ]
@ -798,7 +705,7 @@ class AMPModel(ModelBase):
#override
def get_MergerConfig(self):
morph_factor = np.clip ( io.input_number ("Morph factor", 0.75, add_info="0.0 .. 1.0"), 0.0, 1.0 )
morph_factor = np.clip ( io.input_number ("Morph factor", 1.0, add_info="0.0 .. 1.0"), 0.0, 1.0 )
def predictor_morph(face):
return self.predictor_func(face, morph_factor)

View file

@ -278,7 +278,7 @@ class QModel(ModelBase):
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
#override
def onGetPreview(self, samples):
def onGetPreview(self, samples, for_history=False):
( (warped_src, target_src, target_srcm),
(warped_dst, target_dst, target_dstm) ) = samples

View file

@ -29,7 +29,8 @@ class SAEHDModel(ModelBase):
yn_str = {True:'y',False:'n'}
min_res = 64
max_res = 640
#default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 128)
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'f')
default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True)
@ -68,14 +69,15 @@ class SAEHDModel(ModelBase):
self.ask_random_src_flip()
self.ask_random_dst_flip()
self.ask_batch_size(suggest_batch_size)
#self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.')
if self.is_first_run():
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16 and 32 for -d archi.")
resolution = np.clip ( (resolution // 16) * 16, min_res, max_res)
self.options['resolution'] = resolution
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Half face has better resolution, but covers less area of cheeks. Mid face is 30% wider than half face. 'Whole face' covers full area of face include forehead. 'head' covers full head, but requires XSeg for src and dst faceset.").lower()
while True:
@ -136,11 +138,11 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
self.options['eyes_mouth_prio'] = io.input_bool ("Eyes and mouth priority", default_eyes_mouth_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction. Also makes the detail of the teeth higher.')
self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0)
default_gan_patch_size = self.options['gan_patch_size'] = self.load_or_def_option('gan_patch_size', self.options['resolution'] // 8)
default_gan_dims = self.options['gan_dims'] = self.load_or_def_option('gan_dims', 16)
if self.is_first_run() or ask_override:
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
@ -150,15 +152,15 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.")
self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 1.0", help_message="Forces the neural network to learn small details of the face. Enable it only when the face is trained enough with lr_dropout(on) and random_warp(off), and don't disable. The higher the value, the higher the chances of artifacts. Typical fine value is 0.1"), 0.0, 1.0 )
if self.options['gan_power'] != 0.0:
self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 5.0", help_message="Forces the neural network to learn small details of the face. Enable it only when the face is trained enough with lr_dropout(on) and random_warp(off), and don't disable. The higher the value, the higher the chances of artifacts. Typical fine value is 0.1"), 0.0, 5.0 )
if self.options['gan_power'] != 0.0:
gan_patch_size = np.clip ( io.input_int("GAN patch size", default_gan_patch_size, add_info="3-640", help_message="The higher patch size, the higher the quality, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is resolution / 8." ), 3, 640 )
self.options['gan_patch_size'] = gan_patch_size
gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-64", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 64 )
gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-512", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 512 )
self.options['gan_dims'] = gan_dims
if 'df' in self.options['archi']:
self.options['true_face_power'] = np.clip ( io.input_number ("'True face' power.", default_true_face_power, add_info="0.0000 .. 1.0", help_message="Experimental option. Discriminates result face to be more like src face. Higher value - stronger discrimination. Typical value is 0.01 . Comparison - https://i.imgur.com/czScS9q.png"), 0.0, 1.0 )
else:
@ -174,7 +176,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
if self.options['pretrain'] and self.get_pretraining_data_path() is None:
raise Exception("pretraining_data_path is not defined")
self.gan_model_changed = (default_gan_patch_size != self.options['gan_patch_size']) or (default_gan_dims != self.options['gan_dims'])
self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False)
@ -196,7 +198,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
if 'eyes_prio' in self.options:
self.options.pop('eyes_prio')
eyes_mouth_prio = self.options['eyes_mouth_prio']
archi_split = self.options['archi'].split('-')
@ -205,7 +207,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
archi_type, archi_opts = archi_split
elif len(archi_split) == 1:
archi_type, archi_opts = archi_split[0], None
self.archi_type = archi_type
ae_dims = self.options['ae_dims']
@ -217,12 +219,13 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
self.set_iter(0)
adabelief = self.options['adabelief']
use_fp16 = False#self.options['use_fp16']
self.gan_power = gan_power = 0.0 if self.pretrain else self.options['gan_power']
random_warp = False if self.pretrain else self.options['random_warp']
random_src_flip = self.random_src_flip if not self.pretrain else True
random_dst_flip = self.random_dst_flip if not self.pretrain else True
if self.pretrain:
self.options_show_override['gan_power'] = 0.0
self.options_show_override['random_warp'] = False
@ -235,8 +238,8 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
ct_mode = self.options['ct_mode']
if ct_mode == 'none':
ct_mode = None
models_opt_on_gpu = False if len(devices) == 0 else self.options['models_opt_on_gpu']
models_opt_device = nn.tf_default_device_name if models_opt_on_gpu and self.is_training else '/CPU:0'
optimizer_vars_on_cpu = models_opt_device=='/CPU:0'
@ -260,7 +263,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
self.target_dstm_em = tf.placeholder (nn.floatx, mask_shape, name='target_dstm_em')
# Initializing model classes
model_archi = nn.DeepFakeArchi(resolution, opts=archi_opts)
model_archi = nn.DeepFakeArchi(resolution, use_fp16=use_fp16, opts=archi_opts)
with tf.device (models_opt_device):
if 'df' in archi_type:
@ -350,7 +353,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_G_loss_gvs = []
gpu_D_code_loss_gvs = []
gpu_D_src_dst_loss_gvs = []
for gpu_id in range(gpu_count):
with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
with tf.device(f'/CPU:0'):
@ -402,7 +405,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_target_dstm_style_blur = gpu_target_dstm_blur #default style mask is 0.5 on boundary
gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_blur, 0, 0.5) * 2
gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur
gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur
gpu_target_dst_style_masked = gpu_target_dst*gpu_target_dstm_style_blur
gpu_target_dst_style_anti_masked = gpu_target_dst*(1.0 - gpu_target_dstm_style_blur)
@ -467,7 +470,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_G_loss += self.options['true_face_power']*DLoss(gpu_src_code_d_ones, gpu_src_code_d)
gpu_D_code_loss = (DLoss(gpu_src_code_d_ones , gpu_dst_code_d) + \
gpu_D_code_loss = (DLoss(gpu_dst_code_d_ones , gpu_dst_code_d) + \
DLoss(gpu_src_code_d_zeros, gpu_src_code_d) ) * 0.5
gpu_D_code_loss_gvs += [ nn.gradients (gpu_D_code_loss, self.code_discriminator.get_weights() ) ]
@ -497,14 +500,14 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_G_loss += gan_power*(DLoss(gpu_pred_src_src_d_ones, gpu_pred_src_src_d) + \
DLoss(gpu_pred_src_src_d2_ones, gpu_pred_src_src_d2))
if masked_training:
# Minimal src-src-bg rec with total_variation_mse to suppress random bright dots from gan
gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_src_src)
gpu_G_loss += 0.02*tf.reduce_mean(tf.square(gpu_pred_src_src_anti_masked-gpu_target_src_anti_masked),axis=[1,2,3] )
gpu_G_loss_gvs += [ nn.gradients ( gpu_G_loss, self.src_dst_trainable_weights ) ]
@ -614,10 +617,10 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
if do_init:
model.init_weights()
###############
# initializing sample generators
if self.is_training:
training_data_src_path = self.training_data_src_path if not self.pretrain else self.get_pretraining_data_path()
@ -658,16 +661,20 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
if self.pretrain_just_disabled:
self.update_sample_for_preview(force_new=True)
def dump_ckpt(self):
def export_dfm (self):
output_path=self.get_strpath_storage_for_file('model.dfm')
io.log_info(f'Dumping .dfm to {output_path}')
tf = nn.tf
with tf.device ('/CPU:0'):
nn.set_data_format('NCHW')
with tf.device (nn.tf_default_device_name):
warped_dst = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face')
warped_dst = tf.transpose(warped_dst, (0,3,1,2))
if 'df' in self.archi_type:
gpu_dst_code = self.inter(self.encoder(warped_dst))
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder_src(gpu_dst_code)
@ -682,20 +689,31 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
_, gpu_pred_dst_dstm = self.decoder(gpu_dst_code)
gpu_pred_src_dst = tf.transpose(gpu_pred_src_dst, (0,2,3,1))
gpu_pred_dst_dstm = tf.transpose(gpu_pred_dst_dstm, (0,2,3,1))
gpu_pred_src_dstm = tf.transpose(gpu_pred_src_dstm, (0,2,3,1))
saver = tf.train.Saver()
tf.identity(gpu_pred_dst_dstm, name='out_face_mask')
tf.identity(gpu_pred_src_dst, name='out_celeb_face')
tf.identity(gpu_pred_src_dstm, name='out_celeb_face_mask')
saver.save(nn.tf_sess, self.get_strpath_storage_for_file('.ckpt') )
tf.identity(gpu_pred_src_dstm, name='out_celeb_face_mask')
output_graph_def = tf.graph_util.convert_variables_to_constants(
nn.tf_sess,
tf.get_default_graph().as_graph_def(),
['out_face_mask','out_celeb_face','out_celeb_face_mask']
)
import tf2onnx
with tf.device("/CPU:0"):
model_proto, _ = tf2onnx.convert._convert_common(
output_graph_def,
name='SAEHD',
input_names=['in_face:0'],
output_names=['out_face_mask:0','out_celeb_face:0','out_celeb_face_mask:0'],
opset=13,
output_path=output_path)
#override
def get_model_filename_list(self):
return self.model_filename_list
@ -751,7 +769,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
#override
def onGetPreview(self, samples):
def onGetPreview(self, samples, for_history=False):
( (warped_src, target_src, target_srcm, target_srcm_em),
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples

View file

@ -164,7 +164,7 @@ class XSegModel(ModelBase):
return ( ('loss', np.mean(loss) ), )
#override
def onGetPreview(self, samples):
def onGetPreview(self, samples, for_history=False):
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
srcdst_samples, src_samples, dst_samples = samples

View file

@ -1,9 +1,10 @@
tqdm
numpy==1.19.3
h5py==2.9.0
h5py==2.10.0
opencv-python==4.1.0.25
ffmpeg-python==0.1.17
scikit-image==0.14.2
scipy==1.4.1
colorama
tensorflow-gpu==2.3.1
tensorflow-gpu==2.4.0
tf2onnx==1.8.4

View file

@ -8,3 +8,4 @@ scipy==1.4.1
colorama
tensorflow-gpu==2.4.0
pyqt5
tf2onnx==1.8.4