mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-19 13:09:56 -07:00
added file names to model previews - except xseg
This commit is contained in:
parent
0613321ea3
commit
546b72ff12
5 changed files with 38 additions and 10 deletions
|
@ -364,7 +364,7 @@ class ModelBase(object):
|
||||||
return ( ('loss_src', 0), ('loss_dst', 0) )
|
return ( ('loss_src', 0), ('loss_dst', 0) )
|
||||||
|
|
||||||
#overridable
|
#overridable
|
||||||
def onGetPreview(self, sample, for_history=False):
|
def onGetPreview(self, sample, for_history=False, filenames=None):
|
||||||
#you can return multiple previews
|
#you can return multiple previews
|
||||||
#return [ ('preview_name',preview_rgb), ... ]
|
#return [ ('preview_name',preview_rgb), ... ]
|
||||||
return []
|
return []
|
||||||
|
@ -392,7 +392,7 @@ class ModelBase(object):
|
||||||
return self.target_iter != 0 and self.iter >= self.target_iter
|
return self.target_iter != 0 and self.iter >= self.target_iter
|
||||||
|
|
||||||
def get_previews(self):
|
def get_previews(self):
|
||||||
return self.onGetPreview ( self.last_sample )
|
return self.onGetPreview ( self.last_sample, filenames=self.last_sample_filenames)
|
||||||
|
|
||||||
def get_static_previews(self):
|
def get_static_previews(self):
|
||||||
return self.onGetPreview (self.sample_for_preview)
|
return self.onGetPreview (self.sample_for_preview)
|
||||||
|
@ -476,12 +476,19 @@ class ModelBase(object):
|
||||||
|
|
||||||
def generate_next_samples(self):
|
def generate_next_samples(self):
|
||||||
sample = []
|
sample = []
|
||||||
|
sample_filenames = []
|
||||||
for generator in self.generator_list:
|
for generator in self.generator_list:
|
||||||
if generator.is_initialized():
|
if generator.is_initialized():
|
||||||
sample.append ( generator.generate_next() )
|
batch = generator.generate_next()
|
||||||
|
if type(batch) is tuple:
|
||||||
|
sample.append ( batch[0] )
|
||||||
|
sample_filenames.append( batch[1] )
|
||||||
|
else:
|
||||||
|
sample.append ( batch )
|
||||||
else:
|
else:
|
||||||
sample.append ( [] )
|
sample.append ( [] )
|
||||||
self.last_sample = sample
|
self.last_sample = sample
|
||||||
|
self.last_sample_filenames = sample_filenames
|
||||||
return sample
|
return sample
|
||||||
|
|
||||||
#overridable
|
#overridable
|
||||||
|
|
|
@ -10,6 +10,7 @@ from facelib import FaceType
|
||||||
from models import ModelBase
|
from models import ModelBase
|
||||||
from samplelib import *
|
from samplelib import *
|
||||||
from core.cv2ex import *
|
from core.cv2ex import *
|
||||||
|
from utils.label_face import label_face_filename
|
||||||
|
|
||||||
class AMPModel(ModelBase):
|
class AMPModel(ModelBase):
|
||||||
|
|
||||||
|
@ -742,7 +743,7 @@ class AMPModel(ModelBase):
|
||||||
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
|
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
|
||||||
|
|
||||||
#override
|
#override
|
||||||
def onGetPreview(self, samples, for_history=False):
|
def onGetPreview(self, samples, for_history=False, filenames=None):
|
||||||
( (warped_src, target_src, target_srcm, target_srcm_em),
|
( (warped_src, target_src, target_srcm, target_srcm_em),
|
||||||
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
|
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
|
||||||
|
|
||||||
|
@ -774,6 +775,10 @@ class AMPModel(ModelBase):
|
||||||
|
|
||||||
i = np.random.randint(n_samples) if not for_history else 0
|
i = np.random.randint(n_samples) if not for_history else 0
|
||||||
|
|
||||||
|
if filenames is not None and len(filenames) > 0:
|
||||||
|
S[i] = label_face_filename(S[i], filenames[0][i])
|
||||||
|
D[i] = label_face_filename(D[i], filenames[1][i])
|
||||||
|
|
||||||
st = [ np.concatenate ((S[i], D[i], DD[i]*DDM_000[i]), axis=1) ]
|
st = [ np.concatenate ((S[i], D[i], DD[i]*DDM_000[i]), axis=1) ]
|
||||||
st += [ np.concatenate ((SS[i], DD[i], SD_100[i] ), axis=1) ]
|
st += [ np.concatenate ((SS[i], DD[i], SD_100[i] ), axis=1) ]
|
||||||
|
|
||||||
|
|
|
@ -9,6 +9,7 @@ from core.leras import nn
|
||||||
from facelib import FaceType
|
from facelib import FaceType
|
||||||
from models import ModelBase
|
from models import ModelBase
|
||||||
from samplelib import *
|
from samplelib import *
|
||||||
|
from utils.label_face import label_face_filename
|
||||||
|
|
||||||
class QModel(ModelBase):
|
class QModel(ModelBase):
|
||||||
#override
|
#override
|
||||||
|
@ -278,7 +279,7 @@ class QModel(ModelBase):
|
||||||
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
|
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
|
||||||
|
|
||||||
#override
|
#override
|
||||||
def onGetPreview(self, samples, for_history=False):
|
def onGetPreview(self, samples, for_history=False, filenames=None):
|
||||||
( (warped_src, target_src, target_srcm),
|
( (warped_src, target_src, target_srcm),
|
||||||
(warped_dst, target_dst, target_dstm) ) = samples
|
(warped_dst, target_dst, target_dstm) ) = samples
|
||||||
|
|
||||||
|
@ -288,6 +289,12 @@ class QModel(ModelBase):
|
||||||
target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )]
|
target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )]
|
||||||
|
|
||||||
n_samples = min(4, self.get_batch_size() )
|
n_samples = min(4, self.get_batch_size() )
|
||||||
|
|
||||||
|
if filenames is not None and len(filenames) > 0:
|
||||||
|
for i in range(n_samples):
|
||||||
|
S[i] = label_face_filename(S[i], filenames[0][i])
|
||||||
|
D[i] = label_face_filename(D[i], filenames[1][i])
|
||||||
|
|
||||||
result = []
|
result = []
|
||||||
st = []
|
st = []
|
||||||
for i in range(n_samples):
|
for i in range(n_samples):
|
||||||
|
@ -298,7 +305,7 @@ class QModel(ModelBase):
|
||||||
|
|
||||||
st_m = []
|
st_m = []
|
||||||
for i in range(n_samples):
|
for i in range(n_samples):
|
||||||
ar = S[i]*target_srcm[i], SS[i], D[i]*target_dstm[i], DD[i]*DDM[i], SD[i]*(DDM[i]*SDM[i])
|
ar = label_face_filename(S[i]*target_srcm[i], filenames[0][i]), SS[i], label_face_filename(D[i]*target_dstm[i], filenames[1][i]), DD[i]*DDM[i], SD[i]*(DDM[i]*SDM[i])
|
||||||
st_m.append ( np.concatenate ( ar, axis=1) )
|
st_m.append ( np.concatenate ( ar, axis=1) )
|
||||||
|
|
||||||
result += [ ('Quick96 masked', np.concatenate (st_m, axis=0 )), ]
|
result += [ ('Quick96 masked', np.concatenate (st_m, axis=0 )), ]
|
||||||
|
|
|
@ -9,6 +9,7 @@ from core.leras import nn
|
||||||
from facelib import FaceType
|
from facelib import FaceType
|
||||||
from models import ModelBase
|
from models import ModelBase
|
||||||
from samplelib import *
|
from samplelib import *
|
||||||
|
from utils.label_face import label_face_filename
|
||||||
|
|
||||||
class SAEHDModel(ModelBase):
|
class SAEHDModel(ModelBase):
|
||||||
|
|
||||||
|
@ -786,7 +787,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
|
|
||||||
random_ct_samples_path=training_data_dst_path if ct_mode is not None and not self.pretrain else None
|
random_ct_samples_path=training_data_dst_path if ct_mode is not None and not self.pretrain else None
|
||||||
|
|
||||||
cpu_count = multiprocessing.cpu_count()
|
cpu_count = min(multiprocessing.cpu_count(), 4)
|
||||||
src_generators_count = cpu_count // 2
|
src_generators_count = cpu_count // 2
|
||||||
dst_generators_count = cpu_count // 2
|
dst_generators_count = cpu_count // 2
|
||||||
if ct_mode is not None:
|
if ct_mode is not None:
|
||||||
|
@ -946,7 +947,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
|
|
||||||
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
|
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
|
||||||
#override
|
#override
|
||||||
def onGetPreview(self, samples, for_history=False):
|
def onGetPreview(self, samples, for_history=False, filenames=None):
|
||||||
( (warped_src, target_src, target_srcm, target_srcm_em),
|
( (warped_src, target_src, target_srcm, target_srcm_em),
|
||||||
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
|
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
|
||||||
|
|
||||||
|
@ -958,6 +959,11 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
|
|
||||||
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
|
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
|
||||||
|
|
||||||
|
if filenames is not None and len(filenames) > 0:
|
||||||
|
for i in range(n_samples):
|
||||||
|
S[i] = label_face_filename(S[i], filenames[0][i])
|
||||||
|
D[i] = label_face_filename(D[i], filenames[1][i])
|
||||||
|
|
||||||
if self.resolution <= 256:
|
if self.resolution <= 256:
|
||||||
result = []
|
result = []
|
||||||
|
|
||||||
|
@ -977,7 +983,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
for i in range(n_samples):
|
for i in range(n_samples):
|
||||||
SD_mask = DDM[i]*SDM[i] if self.face_type < FaceType.HEAD else SDM[i]
|
SD_mask = DDM[i]*SDM[i] if self.face_type < FaceType.HEAD else SDM[i]
|
||||||
|
|
||||||
ar = S[i]*target_srcm[i], SS[i]*SSM[i], D[i]*target_dstm[i], DD[i]*DDM[i], SD[i]*SD_mask
|
ar = label_face_filename(S[i]*target_srcm[i], filenames[0][i]), SS[i]*SSM[i], label_face_filename(D[i]*target_dstm[i], filenames[1][i]), DD[i]*DDM[i], SD[i]*SD_mask
|
||||||
st_m.append ( np.concatenate ( ar, axis=1) )
|
st_m.append ( np.concatenate ( ar, axis=1) )
|
||||||
|
|
||||||
result += [ ('SAEHD masked', np.concatenate (st_m, axis=0 )), ]
|
result += [ ('SAEHD masked', np.concatenate (st_m, axis=0 )), ]
|
||||||
|
|
|
@ -115,6 +115,7 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
||||||
samples, index_host, ct_samples, ct_index_host = param
|
samples, index_host, ct_samples, ct_index_host = param
|
||||||
|
|
||||||
bs = self.batch_size
|
bs = self.batch_size
|
||||||
|
filenames = []
|
||||||
while True:
|
while True:
|
||||||
batches = None
|
batches = None
|
||||||
|
|
||||||
|
@ -141,4 +142,6 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
||||||
for i in range(len(x)):
|
for i in range(len(x)):
|
||||||
batches[i].append ( x[i] )
|
batches[i].append ( x[i] )
|
||||||
|
|
||||||
yield [ np.array(batch) for batch in batches]
|
filenames.append(sample.filename)
|
||||||
|
|
||||||
|
yield ([ np.array(batch) for batch in batches], filenames)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue