add more parameters, so that the script can run in non interactive mode

This commit is contained in:
AdamBear 2022-08-18 16:54:21 +08:00
parent cd83f6fedf
commit 51eccfb5a3
5 changed files with 333 additions and 195 deletions

478
main.py
View file

@ -1,9 +1,11 @@
if __name__ == "__main__":
# Fix for linux
import multiprocessing
multiprocessing.set_start_method("spawn")
from core.leras import nn
nn.initialize_main_env()
import os
import sys
@ -18,341 +20,463 @@ if __name__ == "__main__":
if sys.version_info[0] < 3 or (sys.version_info[0] == 3 and sys.version_info[1] < 6):
raise Exception("This program requires at least Python 3.6")
class fixPathAction(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, os.path.abspath(os.path.expanduser(values)))
exit_code = 0
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers()
def process_extract(arguments):
osex.set_process_lowest_prio()
from mainscripts import Extractor
Extractor.main( detector = arguments.detector,
input_path = Path(arguments.input_dir),
output_path = Path(arguments.output_dir),
output_debug = arguments.output_debug,
manual_fix = arguments.manual_fix,
manual_output_debug_fix = arguments.manual_output_debug_fix,
manual_window_size = arguments.manual_window_size,
face_type = arguments.face_type,
max_faces_from_image = arguments.max_faces_from_image,
image_size = arguments.image_size,
jpeg_quality = arguments.jpeg_quality,
cpu_only = arguments.cpu_only,
force_gpu_idxs = [ int(x) for x in arguments.force_gpu_idxs.split(',') ] if arguments.force_gpu_idxs is not None else None,
)
Extractor.main(detector=arguments.detector,
input_path=Path(arguments.input_dir),
output_path=Path(arguments.output_dir),
output_debug=arguments.output_debug,
manual_fix=arguments.manual_fix,
manual_output_debug_fix=arguments.manual_output_debug_fix,
manual_window_size=arguments.manual_window_size,
face_type=arguments.face_type,
max_faces_from_image=arguments.max_faces_from_image,
image_size=arguments.image_size,
jpeg_quality=arguments.jpeg_quality,
cpu_only=arguments.cpu_only,
force_gpu_idxs=[int(x) for x in arguments.force_gpu_idxs.split(
',')] if arguments.force_gpu_idxs is not None else None,
)
p = subparsers.add_parser( "extract", help="Extract the faces from a pictures.")
p.add_argument('--detector', dest="detector", choices=['s3fd','manual'], default=None, help="Type of detector.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.")
p.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir", help="Output directory. This is where the extracted files will be stored.")
p.add_argument('--output-debug', action="store_true", dest="output_debug", default=None, help="Writes debug images to <output-dir>_debug\ directory.")
p.add_argument('--no-output-debug', action="store_false", dest="output_debug", default=None, help="Don't writes debug images to <output-dir>_debug\ directory.")
p.add_argument('--face-type', dest="face_type", choices=['half_face', 'full_face', 'whole_face', 'head', 'mark_only'], default=None)
p.add_argument('--max-faces-from-image', type=int, dest="max_faces_from_image", default=None, help="Max faces from image.")
p = subparsers.add_parser("extract", help="Extract the faces from a pictures.")
p.add_argument('--detector', dest="detector", choices=['s3fd', 'manual'], default=None, help="Type of detector.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir",
help="Input directory. A directory containing the files you wish to process.")
p.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir",
help="Output directory. This is where the extracted files will be stored.")
p.add_argument('--output-debug', action="store_true", dest="output_debug", default=None,
help="Writes debug images to <output-dir>_debug\ directory.")
p.add_argument('--no-output-debug', action="store_false", dest="output_debug", default=None,
help="Don't writes debug images to <output-dir>_debug\ directory.")
p.add_argument('--face-type', dest="face_type",
choices=['half_face', 'full_face', 'whole_face', 'head', 'mark_only'], default=None)
p.add_argument('--max-faces-from-image', type=int, dest="max_faces_from_image", default=None,
help="Max faces from image.")
p.add_argument('--image-size', type=int, dest="image_size", default=None, help="Output image size.")
p.add_argument('--jpeg-quality', type=int, dest="jpeg_quality", default=None, help="Jpeg quality.")
p.add_argument('--manual-fix', action="store_true", dest="manual_fix", default=False, help="Enables manual extract only frames where faces were not recognized.")
p.add_argument('--manual-output-debug-fix', action="store_true", dest="manual_output_debug_fix", default=False, help="Performs manual reextract input-dir frames which were deleted from [output_dir]_debug\ dir.")
p.add_argument('--manual-window-size', type=int, dest="manual_window_size", default=1368, help="Manual fix window size. Default: 1368.")
p.add_argument('--jpeg-quality', type=int, dest="jpeg_quality", default=None, help="Jpeg quality.")
p.add_argument('--manual-fix', action="store_true", dest="manual_fix", default=False,
help="Enables manual extract only frames where faces were not recognized.")
p.add_argument('--manual-output-debug-fix', action="store_true", dest="manual_output_debug_fix", default=False,
help="Performs manual reextract input-dir frames which were deleted from [output_dir]_debug\ dir.")
p.add_argument('--manual-window-size', type=int, dest="manual_window_size", default=1368,
help="Manual fix window size. Default: 1368.")
p.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Extract on CPU..")
p.add_argument('--force-gpu-idxs', dest="force_gpu_idxs", default=None, help="Force to choose GPU indexes separated by comma.")
p.add_argument('--force-gpu-idxs', dest="force_gpu_idxs", default=None,
help="Force to choose GPU indexes separated by comma.")
p.set_defaults(func=process_extract)
p.set_defaults (func=process_extract)
def process_sort(arguments):
osex.set_process_lowest_prio()
from mainscripts import Sorter
Sorter.main (input_path=Path(arguments.input_dir), sort_by_method=arguments.sort_by_method)
Sorter.main(input_path=Path(arguments.input_dir), sort_by_method=arguments.sort_by_method)
p = subparsers.add_parser("sort", help="Sort faces in a directory.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir",
help="Input directory. A directory containing the files you wish to process.")
p.add_argument('--by', dest="sort_by_method", default=None, choices=(
"blur", "motion-blur", "face-yaw", "face-pitch", "face-source-rect-size", "hist", "hist-dissim", "brightness",
"hue", "black", "origname", "oneface", "final-by-blur", "final-by-size", "absdiff"),
help="Method of sorting. 'origname' sort by original filename to recover original sequence.")
p.set_defaults(func=process_sort)
p = subparsers.add_parser( "sort", help="Sort faces in a directory.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.")
p.add_argument('--by', dest="sort_by_method", default=None, choices=("blur", "motion-blur", "face-yaw", "face-pitch", "face-source-rect-size", "hist", "hist-dissim", "brightness", "hue", "black", "origname", "oneface", "final-by-blur", "final-by-size", "absdiff"), help="Method of sorting. 'origname' sort by original filename to recover original sequence." )
p.set_defaults (func=process_sort)
def process_util(arguments):
osex.set_process_lowest_prio()
from mainscripts import Util
if arguments.add_landmarks_debug_images:
Util.add_landmarks_debug_images (input_path=arguments.input_dir)
Util.add_landmarks_debug_images(input_path=arguments.input_dir)
if arguments.recover_original_aligned_filename:
Util.recover_original_aligned_filename (input_path=arguments.input_dir)
Util.recover_original_aligned_filename(input_path=arguments.input_dir)
if arguments.save_faceset_metadata:
Util.save_faceset_metadata_folder (input_path=arguments.input_dir)
Util.save_faceset_metadata_folder(input_path=arguments.input_dir)
if arguments.restore_faceset_metadata:
Util.restore_faceset_metadata_folder (input_path=arguments.input_dir)
Util.restore_faceset_metadata_folder(input_path=arguments.input_dir)
if arguments.pack_faceset:
io.log_info ("Performing faceset packing...\r\n")
io.log_info("Performing faceset packing...\r\n")
from samplelib import PackedFaceset
PackedFaceset.pack( Path(arguments.input_dir) )
PackedFaceset.pack(Path(arguments.input_dir))
if arguments.unpack_faceset:
io.log_info ("Performing faceset unpacking...\r\n")
io.log_info("Performing faceset unpacking...\r\n")
from samplelib import PackedFaceset
PackedFaceset.unpack( Path(arguments.input_dir) )
if arguments.export_faceset_mask:
io.log_info ("Exporting faceset mask..\r\n")
Util.export_faceset_mask( Path(arguments.input_dir) )
PackedFaceset.unpack(Path(arguments.input_dir))
p = subparsers.add_parser( "util", help="Utilities.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.")
p.add_argument('--add-landmarks-debug-images', action="store_true", dest="add_landmarks_debug_images", default=False, help="Add landmarks debug image for aligned faces.")
p.add_argument('--recover-original-aligned-filename', action="store_true", dest="recover_original_aligned_filename", default=False, help="Recover original aligned filename.")
p.add_argument('--save-faceset-metadata', action="store_true", dest="save_faceset_metadata", default=False, help="Save faceset metadata to file.")
p.add_argument('--restore-faceset-metadata', action="store_true", dest="restore_faceset_metadata", default=False, help="Restore faceset metadata to file. Image filenames must be the same as used with save.")
if arguments.export_faceset_mask:
io.log_info("Exporting faceset mask..\r\n")
Util.export_faceset_mask(Path(arguments.input_dir))
p = subparsers.add_parser("util", help="Utilities.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir",
help="Input directory. A directory containing the files you wish to process.")
p.add_argument('--add-landmarks-debug-images', action="store_true", dest="add_landmarks_debug_images",
default=False, help="Add landmarks debug image for aligned faces.")
p.add_argument('--recover-original-aligned-filename', action="store_true", dest="recover_original_aligned_filename",
default=False, help="Recover original aligned filename.")
p.add_argument('--save-faceset-metadata', action="store_true", dest="save_faceset_metadata", default=False,
help="Save faceset metadata to file.")
p.add_argument('--restore-faceset-metadata', action="store_true", dest="restore_faceset_metadata", default=False,
help="Restore faceset metadata to file. Image filenames must be the same as used with save.")
p.add_argument('--pack-faceset', action="store_true", dest="pack_faceset", default=False, help="")
p.add_argument('--unpack-faceset', action="store_true", dest="unpack_faceset", default=False, help="")
p.add_argument('--export-faceset-mask', action="store_true", dest="export_faceset_mask", default=False, help="")
p.set_defaults (func=process_util)
p.set_defaults(func=process_util)
def process_train(arguments):
osex.set_process_lowest_prio()
kwargs = {'model_class_name' : arguments.model_name,
'saved_models_path' : Path(arguments.model_dir),
'training_data_src_path' : Path(arguments.training_data_src_dir),
'training_data_dst_path' : Path(arguments.training_data_dst_dir),
'pretraining_data_path' : Path(arguments.pretraining_data_dir) if arguments.pretraining_data_dir is not None else None,
'pretrained_model_path' : Path(arguments.pretrained_model_dir) if arguments.pretrained_model_dir is not None else None,
'no_preview' : arguments.no_preview,
'force_model_name' : arguments.force_model_name,
'force_gpu_idxs' : [ int(x) for x in arguments.force_gpu_idxs.split(',') ] if arguments.force_gpu_idxs is not None else None,
'cpu_only' : arguments.cpu_only,
'silent_start' : arguments.silent_start,
'execute_programs' : [ [int(x[0]), x[1] ] for x in arguments.execute_program ],
'debug' : arguments.debug,
kwargs = {'model_class_name': arguments.model_name,
'saved_models_path': Path(arguments.model_dir),
'training_data_src_path': Path(arguments.training_data_src_dir),
'training_data_dst_path': Path(arguments.training_data_dst_dir),
'pretraining_data_path': Path(
arguments.pretraining_data_dir) if arguments.pretraining_data_dir is not None else None,
'pretrained_model_path': Path(
arguments.pretrained_model_dir) if arguments.pretrained_model_dir is not None else None,
'no_preview': arguments.no_preview,
'force_model_name': arguments.force_model_name,
'force_gpu_idxs': [int(x) for x in arguments.force_gpu_idxs.split(
',')] if arguments.force_gpu_idxs is not None else None,
'cpu_only': arguments.cpu_only,
'silent_start': arguments.silent_start,
'execute_programs': [[int(x[0]), x[1]] for x in arguments.execute_program],
'debug': arguments.debug,
}
from mainscripts import Trainer
Trainer.main(**kwargs)
p = subparsers.add_parser( "train", help="Trainer")
p.add_argument('--training-data-src-dir', required=True, action=fixPathAction, dest="training_data_src_dir", help="Dir of extracted SRC faceset.")
p.add_argument('--training-data-dst-dir', required=True, action=fixPathAction, dest="training_data_dst_dir", help="Dir of extracted DST faceset.")
p.add_argument('--pretraining-data-dir', action=fixPathAction, dest="pretraining_data_dir", default=None, help="Optional dir of extracted faceset that will be used in pretraining mode.")
p.add_argument('--pretrained-model-dir', action=fixPathAction, dest="pretrained_model_dir", default=None, help="Optional dir of pretrain model files. (Currently only for Quick96).")
p = subparsers.add_parser("train", help="Trainer")
p.add_argument('--training-data-src-dir', required=True, action=fixPathAction, dest="training_data_src_dir",
help="Dir of extracted SRC faceset.")
p.add_argument('--training-data-dst-dir', required=True, action=fixPathAction, dest="training_data_dst_dir",
help="Dir of extracted DST faceset.")
p.add_argument('--pretraining-data-dir', action=fixPathAction, dest="pretraining_data_dir", default=None,
help="Optional dir of extracted faceset that will be used in pretraining mode.")
p.add_argument('--pretrained-model-dir', action=fixPathAction, dest="pretrained_model_dir", default=None,
help="Optional dir of pretrain model files. (Currently only for Quick96).")
p.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir", help="Saved models dir.")
p.add_argument('--model', required=True, dest="model_name", choices=pathex.get_all_dir_names_startswith ( Path(__file__).parent / 'models' , 'Model_'), help="Model class name.")
p.add_argument('--model', required=True, dest="model_name",
choices=pathex.get_all_dir_names_startswith(Path(__file__).parent / 'models', 'Model_'),
help="Model class name.")
p.add_argument('--debug', action="store_true", dest="debug", default=False, help="Debug samples.")
p.add_argument('--no-preview', action="store_true", dest="no_preview", default=False, help="Disable preview window.")
p.add_argument('--force-model-name', dest="force_model_name", default=None, help="Forcing to choose model name from model/ folder.")
p.add_argument('--no-preview', action="store_true", dest="no_preview", default=False,
help="Disable preview window.")
p.add_argument('--force-model-name', dest="force_model_name", default=None,
help="Forcing to choose model name from model/ folder.")
p.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Train on CPU.")
p.add_argument('--force-gpu-idxs', dest="force_gpu_idxs", default=None, help="Force to choose GPU indexes separated by comma.")
p.add_argument('--silent-start', action="store_true", dest="silent_start", default=False, help="Silent start. Automatically chooses Best GPU and last used model.")
p.add_argument('--force-gpu-idxs', dest="force_gpu_idxs", default=None,
help="Force to choose GPU indexes separated by comma.")
p.add_argument('--silent-start', action="store_true", dest="silent_start", default=False,
help="Silent start. Automatically chooses Best GPU and last used model.")
p.add_argument('--execute-program', dest="execute_program", default=[], action='append', nargs='+')
p.set_defaults (func=process_train)
p.set_defaults(func=process_train)
def process_exportdfm(arguments):
osex.set_process_lowest_prio()
from mainscripts import ExportDFM
ExportDFM.main(model_class_name = arguments.model_name, saved_models_path = Path(arguments.model_dir))
ExportDFM.main(model_class_name=arguments.model_name, saved_models_path=Path(arguments.model_dir))
p = subparsers.add_parser( "exportdfm", help="Export model to use in DeepFaceLive.")
p = subparsers.add_parser("exportdfm", help="Export model to use in DeepFaceLive.")
p.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir", help="Saved models dir.")
p.add_argument('--model', required=True, dest="model_name", choices=pathex.get_all_dir_names_startswith ( Path(__file__).parent / 'models' , 'Model_'), help="Model class name.")
p.set_defaults (func=process_exportdfm)
p.add_argument('--model', required=True, dest="model_name",
choices=pathex.get_all_dir_names_startswith(Path(__file__).parent / 'models', 'Model_'),
help="Model class name.")
p.set_defaults(func=process_exportdfm)
def process_merge(arguments):
osex.set_process_lowest_prio()
from mainscripts import Merger
Merger.main ( model_class_name = arguments.model_name,
saved_models_path = Path(arguments.model_dir),
force_model_name = arguments.force_model_name,
input_path = Path(arguments.input_dir),
output_path = Path(arguments.output_dir),
output_mask_path = Path(arguments.output_mask_dir),
aligned_path = Path(arguments.aligned_dir) if arguments.aligned_dir is not None else None,
force_gpu_idxs = arguments.force_gpu_idxs,
cpu_only = arguments.cpu_only)
Merger.main(model_class_name=arguments.model_name,
saved_models_path=Path(arguments.model_dir),
force_model_name=arguments.force_model_name,
input_path=Path(arguments.input_dir),
output_path=Path(arguments.output_dir),
output_mask_path=Path(arguments.output_mask_dir),
aligned_path=Path(arguments.aligned_dir) if arguments.aligned_dir is not None else None,
force_gpu_idxs=arguments.force_gpu_idxs,
cpu_only=arguments.cpu_only,
is_interactive=arguments.is_interactive,
config=arguments.config,
subprocess_count=arguments.subprocess_count)
p = subparsers.add_parser( "merge", help="Merger")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.")
p.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir", help="Output directory. This is where the merged files will be stored.")
p.add_argument('--output-mask-dir', required=True, action=fixPathAction, dest="output_mask_dir", help="Output mask directory. This is where the mask files will be stored.")
p.add_argument('--aligned-dir', action=fixPathAction, dest="aligned_dir", default=None, help="Aligned directory. This is where the extracted of dst faces stored.")
p = subparsers.add_parser("merge", help="Merger")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir",
help="Input directory. A directory containing the files you wish to process.")
p.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir",
help="Output directory. This is where the merged files will be stored.")
p.add_argument('--output-mask-dir', required=True, action=fixPathAction, dest="output_mask_dir",
help="Output mask directory. This is where the mask files will be stored.")
p.add_argument('--aligned-dir', action=fixPathAction, dest="aligned_dir", default=None,
help="Aligned directory. This is where the extracted of dst faces stored.")
p.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir", help="Model dir.")
p.add_argument('--model', required=True, dest="model_name", choices=pathex.get_all_dir_names_startswith ( Path(__file__).parent / 'models' , 'Model_'), help="Model class name.")
p.add_argument('--force-model-name', dest="force_model_name", default=None, help="Forcing to choose model name from model/ folder.")
p.add_argument('--model', required=True, dest="model_name",
choices=pathex.get_all_dir_names_startswith(Path(__file__).parent / 'models', 'Model_'),
help="Model class name.")
p.add_argument('--force-model-name', dest="force_model_name", default=None,
help="Forcing to choose model name from model/ folder.")
p.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Merge on CPU.")
p.add_argument('--force-gpu-idxs', dest="force_gpu_idxs", default=None, help="Force to choose GPU indexes separated by comma.")
p.add_argument('--force-gpu-idxs', dest="force_gpu_idxs", default=None,
help="Force to choose GPU indexes separated by comma.")
p.add_argument('--is_interactive', dest="is_interactive", default=None,
help="Forcing to interactivate mode or not.")
p.add_argument('--config', dest="config", default=None,
help="MergerConfig object can be set outside by script")
p.add_argument('--subprocess_count', type=int, dest="subprocess_count", default=-1,
help="Specify the number of threads to process. A low value may affect performance. A high value may result in memory error. The value may not be greater than CPU cores.")
p.set_defaults(func=process_merge)
videoed_parser = subparsers.add_parser( "videoed", help="Video processing.").add_subparsers()
videoed_parser = subparsers.add_parser("videoed", help="Video processing.").add_subparsers()
def process_videoed_extract_video(arguments):
osex.set_process_lowest_prio()
from mainscripts import VideoEd
VideoEd.extract_video (arguments.input_file, arguments.output_dir, arguments.output_ext, arguments.fps)
p = videoed_parser.add_parser( "extract-video", help="Extract images from video file.")
p.add_argument('--input-file', required=True, action=fixPathAction, dest="input_file", help="Input file to be processed. Specify .*-extension to find first file.")
p.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir", help="Output directory. This is where the extracted images will be stored.")
VideoEd.extract_video(arguments.input_file, arguments.output_dir, arguments.output_ext, arguments.fps)
p = videoed_parser.add_parser("extract-video", help="Extract images from video file.")
p.add_argument('--input-file', required=True, action=fixPathAction, dest="input_file",
help="Input file to be processed. Specify .*-extension to find first file.")
p.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir",
help="Output directory. This is where the extracted images will be stored.")
p.add_argument('--output-ext', dest="output_ext", default=None, help="Image format (extension) of output files.")
p.add_argument('--fps', type=int, dest="fps", default=None, help="How many frames of every second of the video will be extracted. 0 - full fps.")
p.add_argument('--fps', type=int, dest="fps", default=None,
help="How many frames of every second of the video will be extracted. 0 - full fps.")
p.set_defaults(func=process_videoed_extract_video)
def process_videoed_cut_video(arguments):
osex.set_process_lowest_prio()
from mainscripts import VideoEd
VideoEd.cut_video (arguments.input_file,
arguments.from_time,
arguments.to_time,
arguments.audio_track_id,
arguments.bitrate)
p = videoed_parser.add_parser( "cut-video", help="Cut video file.")
p.add_argument('--input-file', required=True, action=fixPathAction, dest="input_file", help="Input file to be processed. Specify .*-extension to find first file.")
VideoEd.cut_video(arguments.input_file,
arguments.from_time,
arguments.to_time,
arguments.audio_track_id,
arguments.bitrate)
p = videoed_parser.add_parser("cut-video", help="Cut video file.")
p.add_argument('--input-file', required=True, action=fixPathAction, dest="input_file",
help="Input file to be processed. Specify .*-extension to find first file.")
p.add_argument('--from-time', dest="from_time", default=None, help="From time, for example 00:00:00.000")
p.add_argument('--to-time', dest="to_time", default=None, help="To time, for example 00:00:00.000")
p.add_argument('--audio-track-id', type=int, dest="audio_track_id", default=None, help="Specify audio track id.")
p.add_argument('--bitrate', type=int, dest="bitrate", default=None, help="Bitrate of output file in Megabits.")
p.set_defaults(func=process_videoed_cut_video)
def process_videoed_denoise_image_sequence(arguments):
osex.set_process_lowest_prio()
from mainscripts import VideoEd
VideoEd.denoise_image_sequence (arguments.input_dir, arguments.factor)
p = videoed_parser.add_parser( "denoise-image-sequence", help="Denoise sequence of images, keeping sharp edges. Helps to remove pixel shake from the predicted face.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory to be processed.")
VideoEd.denoise_image_sequence(arguments.input_dir, None, arguments.factor)
p = videoed_parser.add_parser("denoise-image-sequence",
help="Denoise sequence of images, keeping sharp edges. Helps to remove pixel shake from the predicted face.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir",
help="Input directory to be processed.")
p.add_argument('--factor', type=int, dest="factor", default=None, help="Denoise factor (1-20).")
p.set_defaults(func=process_videoed_denoise_image_sequence)
def process_videoed_video_from_sequence(arguments):
osex.set_process_lowest_prio()
from mainscripts import VideoEd
VideoEd.video_from_sequence (input_dir = arguments.input_dir,
output_file = arguments.output_file,
reference_file = arguments.reference_file,
ext = arguments.ext,
fps = arguments.fps,
bitrate = arguments.bitrate,
include_audio = arguments.include_audio,
lossless = arguments.lossless)
VideoEd.video_from_sequence(input_dir=arguments.input_dir,
output_file=arguments.output_file,
reference_file=arguments.reference_file,
ext=arguments.ext,
fps=arguments.fps,
bitrate=arguments.bitrate,
include_audio=arguments.include_audio,
lossless=arguments.lossless)
p = videoed_parser.add_parser( "video-from-sequence", help="Make video from image sequence.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input file to be processed. Specify .*-extension to find first file.")
p.add_argument('--output-file', required=True, action=fixPathAction, dest="output_file", help="Input file to be processed. Specify .*-extension to find first file.")
p.add_argument('--reference-file', action=fixPathAction, dest="reference_file", help="Reference file used to determine proper FPS and transfer audio from it. Specify .*-extension to find first file.")
p = videoed_parser.add_parser("video-from-sequence", help="Make video from image sequence.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir",
help="Input file to be processed. Specify .*-extension to find first file.")
p.add_argument('--output-file', required=True, action=fixPathAction, dest="output_file",
help="Input file to be processed. Specify .*-extension to find first file.")
p.add_argument('--reference-file', action=fixPathAction, dest="reference_file",
help="Reference file used to determine proper FPS and transfer audio from it. Specify .*-extension to find first file.")
p.add_argument('--ext', dest="ext", default='png', help="Image format (extension) of input files.")
p.add_argument('--fps', type=int, dest="fps", default=None, help="FPS of output file. Overwritten by reference-file.")
p.add_argument('--fps', type=int, dest="fps", default=None,
help="FPS of output file. Overwritten by reference-file.")
p.add_argument('--bitrate', type=int, dest="bitrate", default=None, help="Bitrate of output file in Megabits.")
p.add_argument('--include-audio', action="store_true", dest="include_audio", default=False, help="Include audio from reference file.")
p.add_argument('--include-audio', action="store_true", dest="include_audio", default=False,
help="Include audio from reference file.")
p.add_argument('--lossless', action="store_true", dest="lossless", default=False, help="PNG codec.")
p.set_defaults(func=process_videoed_video_from_sequence)
facesettool_parser = subparsers.add_parser( "facesettool", help="Faceset tools.").add_subparsers()
facesettool_parser = subparsers.add_parser("facesettool", help="Faceset tools.").add_subparsers()
def process_faceset_enhancer(arguments):
osex.set_process_lowest_prio()
from mainscripts import FacesetEnhancer
FacesetEnhancer.process_folder ( Path(arguments.input_dir),
cpu_only=arguments.cpu_only,
force_gpu_idxs=arguments.force_gpu_idxs
FacesetEnhancer.process_folder(Path(arguments.input_dir),
cpu_only=arguments.cpu_only,
force_gpu_idxs=arguments.force_gpu_idxs,
is_merge=arguments.is_merge
)
p = facesettool_parser.add_parser ("enhance", help="Enhance details in DFL faceset.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory of aligned faces.")
p = facesettool_parser.add_parser("enhance", help="Enhance details in DFL faceset.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir",
help="Input directory of aligned faces.")
p.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Process on CPU.")
p.add_argument('--force-gpu-idxs', dest="force_gpu_idxs", default=None, help="Force to choose GPU indexes separated by comma.")
p.add_argument('--force-gpu-idxs', dest="force_gpu_idxs", default=None,
help="Force to choose GPU indexes separated by comma.")
p.add_argument('--is_merge', dest="is_merge", default=None,
help="Force to merge enhanced into aligned")
p.set_defaults(func=process_faceset_enhancer)
p = facesettool_parser.add_parser ("resize", help="Resize DFL faceset.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory of aligned faces.")
p = facesettool_parser.add_parser("resize", help="Resize DFL faceset.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir",
help="Input directory of aligned faces.")
p.add_argument('--image-size', type=int, dest="image_size", default=512, help="Output image size.")
p.add_argument('--face-type', dest="face_type",
choices=['h','mf','f','wf','head','same'], default='same')
p.add_argument('--is_merge', dest="is_merge", default=None,
help="Force to merge enhanced into aligned")
def process_faceset_resizer(arguments):
osex.set_process_lowest_prio()
from mainscripts import FacesetResizer
FacesetResizer.process_folder ( Path(arguments.input_dir) )
FacesetResizer.process_folder(Path(arguments.input_dir),
arguments.image_size, arguments.face_type, arguments.is_merge)
p.set_defaults(func=process_faceset_resizer)
def process_dev_test(arguments):
osex.set_process_lowest_prio()
from mainscripts import dev_misc
dev_misc.dev_gen_mask_files( arguments.input_dir )
dev_misc.dev_gen_mask_files(arguments.input_dir)
p = subparsers.add_parser( "dev_test", help="")
p = subparsers.add_parser("dev_test", help="")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
p.set_defaults (func=process_dev_test)
p.set_defaults(func=process_dev_test)
# ========== XSeg
xseg_parser = subparsers.add_parser( "xseg", help="XSeg tools.").add_subparsers()
p = xseg_parser.add_parser( "editor", help="XSeg editor.")
xseg_parser = subparsers.add_parser("xseg", help="XSeg tools.").add_subparsers()
p = xseg_parser.add_parser("editor", help="XSeg editor.")
def process_xsegeditor(arguments):
osex.set_process_lowest_prio()
from XSegEditor import XSegEditor
global exit_code
exit_code = XSegEditor.start (Path(arguments.input_dir))
exit_code = XSegEditor.start(Path(arguments.input_dir))
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
p.set_defaults (func=process_xsegeditor)
p = xseg_parser.add_parser( "apply", help="Apply trained XSeg model to the extracted faces.")
p.set_defaults(func=process_xsegeditor)
p = xseg_parser.add_parser("apply", help="Apply trained XSeg model to the extracted faces.")
def process_xsegapply(arguments):
osex.set_process_lowest_prio()
from mainscripts import XSegUtil
XSegUtil.apply_xseg (Path(arguments.input_dir), Path(arguments.model_dir))
XSegUtil.apply_xseg(Path(arguments.input_dir), Path(arguments.model_dir), arguments.force_gpu_idxs)
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
p.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir")
p.set_defaults (func=process_xsegapply)
p = xseg_parser.add_parser( "remove", help="Remove applied XSeg masks from the extracted faces.")
p.add_argument('--force-gpu-idxs', dest="force_gpu_idxs", default=None,
help="Force to choose GPU indexes separated by comma.")
p.set_defaults(func=process_xsegapply)
p = xseg_parser.add_parser("remove", help="Remove applied XSeg masks from the extracted faces.")
def process_xsegremove(arguments):
osex.set_process_lowest_prio()
from mainscripts import XSegUtil
XSegUtil.remove_xseg (Path(arguments.input_dir) )
XSegUtil.remove_xseg(Path(arguments.input_dir))
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
p.set_defaults (func=process_xsegremove)
p = xseg_parser.add_parser( "remove_labels", help="Remove XSeg labels from the extracted faces.")
p.set_defaults(func=process_xsegremove)
p = xseg_parser.add_parser("remove_labels", help="Remove XSeg labels from the extracted faces.")
def process_xsegremovelabels(arguments):
osex.set_process_lowest_prio()
from mainscripts import XSegUtil
XSegUtil.remove_xseg_labels (Path(arguments.input_dir) )
XSegUtil.remove_xseg_labels(Path(arguments.input_dir))
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
p.set_defaults (func=process_xsegremovelabels)
p = xseg_parser.add_parser( "fetch", help="Copies faces containing XSeg polygons in <input_dir>_xseg dir.")
p.set_defaults(func=process_xsegremovelabels)
p = xseg_parser.add_parser("fetch", help="Copies faces containing XSeg polygons in <input_dir>_xseg dir.")
def process_xsegfetch(arguments):
osex.set_process_lowest_prio()
from mainscripts import XSegUtil
XSegUtil.fetch_xseg (Path(arguments.input_dir) )
XSegUtil.fetch_xseg(Path(arguments.input_dir))
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
p.set_defaults (func=process_xsegfetch)
p.set_defaults(func=process_xsegfetch)
def bad_args(arguments):
parser.print_help()
exit(0)
parser.set_defaults(func=bad_args)
arguments = parser.parse_args()
arguments.func(arguments)
if exit_code == 0:
print ("Done.")
print("Done.")
exit(exit_code)
'''
import code
code.interact(local=dict(globals(), **locals()))
'''
'''

View file

@ -122,7 +122,7 @@ class FacesetEnhancerSubprocessor(Subprocessor):
return (0, filepath, None)
def process_folder ( dirpath, cpu_only=False, force_gpu_idxs=None ):
def process_folder ( dirpath, cpu_only=False, force_gpu_idxs=None, is_merge=None ):
device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(suggest_all_gpu=True) ) \
if not cpu_only else nn.DeviceConfig.CPU()
@ -142,7 +142,9 @@ def process_folder ( dirpath, cpu_only=False, force_gpu_idxs=None ):
image_paths = [Path(x) for x in pathex.get_image_paths( dirpath )]
result = FacesetEnhancerSubprocessor ( image_paths, output_dirpath, device_config=device_config).run()
is_merge = io.input_bool (f"\r\nMerge {output_dirpath_parts} to {dirpath_parts} ?", True)
if is_merge is None:
is_merge = io.input_bool (f"\r\nMerge {output_dirpath_parts} to {dirpath_parts} ?", True)
if is_merge:
io.log_info (f"Copying processed files to {dirpath_parts}")

View file

@ -164,11 +164,14 @@ class FacesetResizerSubprocessor(Subprocessor):
return (0, filepath, None)
def process_folder ( dirpath):
image_size = io.input_int(f"New image size", 512, valid_range=[128,2048])
face_type = io.input_str ("Change face type", 'same', ['h','mf','f','wf','head','same']).lower()
def process_folder ( dirpath, image_size=None, face_type=None, is_merge=None):
if not image_size:
image_size = io.input_int(f"New image size", 512, valid_range=[128,2048])
if not face_type:
face_type = io.input_str ("Change face type", 'same', ['h','mf','f','wf','head','same']).lower()
if face_type == 'same':
face_type = None
else:
@ -195,7 +198,9 @@ def process_folder ( dirpath):
image_paths = [Path(x) for x in pathex.get_image_paths( dirpath )]
result = FacesetResizerSubprocessor ( image_paths, output_dirpath, image_size, face_type).run()
is_merge = io.input_bool (f"\r\nMerge {output_dirpath_parts} to {dirpath_parts} ?", True)
if not is_merge:
is_merge = io.input_bool (f"\r\nMerge {output_dirpath_parts} to {dirpath_parts} ?", True)
if is_merge:
io.log_info (f"Copying processed files to {dirpath_parts}")

View file

@ -26,7 +26,10 @@ def main (model_class_name=None,
output_mask_path=None,
aligned_path=None,
force_gpu_idxs=None,
cpu_only=None):
cpu_only=None,
is_interactive=None,
config=None,
subprocess_count=0):
io.log_info ("Running merger.\r\n")
try:
@ -69,12 +72,16 @@ def main (model_class_name=None,
place_model_on_cpu=True,
run_on_cpu=run_on_cpu)
is_interactive = io.input_bool ("Use interactive merger?", True) if not io.is_colab() else False
if is_interactive is None:
is_interactive = io.input_bool ("Use interactive merger?", True) if not io.is_colab() else False
if not is_interactive:
if not is_interactive and not config:
cfg.ask_settings()
subprocess_count = io.input_int("Number of workers?", max(8, multiprocessing.cpu_count()),
else:
cfg = config
if subprocess_count <= 0:
subprocess_count = io.input_int("Number of workers?", max(8, multiprocessing.cpu_count()),
valid_range=[1, multiprocessing.cpu_count()], help_message="Specify the number of threads to process. A low value may affect performance. A high value may result in memory error. The value may not be greater than CPU cores." )
input_path_image_paths = pathex.get_image_paths(input_path)

View file

@ -13,7 +13,7 @@ from DFLIMG import *
from facelib import XSegNet, LandmarksProcessor, FaceType
import pickle
def apply_xseg(input_path, model_path):
def apply_xseg(input_path, model_path, force_gpu_idxs=None):
if not input_path.exists():
raise ValueError(f'{input_path} not found. Please ensure it exists.')
@ -45,11 +45,11 @@ def apply_xseg(input_path, model_path):
io.log_info(f'Applying trained XSeg model to {input_path.name}/ folder.')
device_config = nn.DeviceConfig.ask_choose_device(choose_only_one=True)
device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(choose_only_one=True) )
nn.initialize(device_config)
xseg = XSegNet(name='XSeg',
load_weights=True,
weights_file_root=model_path,