diff --git a/models/Model_SAE/Model.py b/models/Model_SAE/Model.py index 7147b6f..66c5b45 100644 --- a/models/Model_SAE/Model.py +++ b/models/Model_SAE/Model.py @@ -258,9 +258,9 @@ class SAEModel(ModelBase): src_dst_mask_loss_train_weights = self.encoder.trainable_weights + self.decoder_srcm.trainable_weights + self.decoder_dstm.trainable_weights if not self.options['pixel_loss']: - src_loss_batch = sum([ ( 10*K.square( dssim(kernel_size=int(resolution/11.6),max_value=1.0)( target_src_masked_ar_opt[i], pred_src_src_masked_ar_opt[i] ) )) for i in range(len(target_src_masked_ar_opt)) ]) + src_loss_batch = sum([ ( 100*K.square( dssim(kernel_size=int(resolution/11.6),max_value=1.0)( target_src_masked_ar_opt[i], pred_src_src_masked_ar_opt[i] ) )) for i in range(len(target_src_masked_ar_opt)) ]) else: - src_loss_batch = sum([ K.mean ( 10*K.square( target_src_masked_ar_opt[i] - pred_src_src_masked_ar_opt[i] ), axis=[1,2,3]) for i in range(len(target_src_masked_ar_opt)) ]) + src_loss_batch = sum([ K.mean ( 100*K.square( target_src_masked_ar_opt[i] - pred_src_src_masked_ar_opt[i] ), axis=[1,2,3]) for i in range(len(target_src_masked_ar_opt)) ]) src_loss = K.mean(src_loss_batch) @@ -272,15 +272,15 @@ class SAEModel(ModelBase): bg_style_power = self.options['bg_style_power'] / 100.0 if bg_style_power != 0: if not self.options['pixel_loss']: - bg_loss = K.mean( (10*bg_style_power)*K.square(dssim(kernel_size=int(resolution/11.6),max_value=1.0)( psd_target_dst_anti_masked_ar[-1], target_dst_anti_masked_ar[-1] ))) + bg_loss = K.mean( (100*bg_style_power)*K.square(dssim(kernel_size=int(resolution/11.6),max_value=1.0)( psd_target_dst_anti_masked_ar[-1], target_dst_anti_masked_ar[-1] ))) else: - bg_loss = K.mean( (10*bg_style_power)*K.square( psd_target_dst_anti_masked_ar[-1] - target_dst_anti_masked_ar[-1] )) + bg_loss = K.mean( (100*bg_style_power)*K.square( psd_target_dst_anti_masked_ar[-1] - target_dst_anti_masked_ar[-1] )) src_loss += bg_loss if not self.options['pixel_loss']: - dst_loss_batch = sum([ ( 10*K.square(dssim(kernel_size=int(resolution/11.6),max_value=1.0)( target_dst_masked_ar_opt[i], pred_dst_dst_masked_ar_opt[i] ) )) for i in range(len(target_dst_masked_ar_opt)) ]) + dst_loss_batch = sum([ ( 100*K.square(dssim(kernel_size=int(resolution/11.6),max_value=1.0)( target_dst_masked_ar_opt[i], pred_dst_dst_masked_ar_opt[i] ) )) for i in range(len(target_dst_masked_ar_opt)) ]) else: - dst_loss_batch = sum([ K.mean ( 10*K.square( target_dst_masked_ar_opt[i] - pred_dst_dst_masked_ar_opt[i] ), axis=[1,2,3]) for i in range(len(target_dst_masked_ar_opt)) ]) + dst_loss_batch = sum([ K.mean ( 100*K.square( target_dst_masked_ar_opt[i] - pred_dst_dst_masked_ar_opt[i] ), axis=[1,2,3]) for i in range(len(target_dst_masked_ar_opt)) ]) dst_loss = K.mean(dst_loss_batch)