diff --git a/models/Model_SAEHD/Model.py b/models/Model_SAEHD/Model.py index 6ae3fb5..3f4864a 100644 --- a/models/Model_SAEHD/Model.py +++ b/models/Model_SAEHD/Model.py @@ -465,7 +465,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... gpu_src_loss += tf.reduce_mean( (10*bg_style_power)*tf.square(gpu_psd_target_dst_style_anti_masked - gpu_target_dst_style_anti_masked), axis=[1,2,3] ) if self.options['ms_ssim_loss']: - gpu_dst_loss = tf.reduce_mean ( 10*nn.MsSsim(resolution)(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0)) + gpu_dst_loss = 10*nn.MsSsim(resolution)(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0) else: if resolution < 256: gpu_dst_loss = tf.reduce_mean ( 10*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1]) @@ -484,15 +484,14 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... gpu_target_part_mask = gpu_target_dstm_mouth if self.options['ms_ssim_loss']: - gpu_dst_loss += tf.reduce_mean ( 300*nn.MsSsim(resolution, kernel_size=5)(gpu_target_dst*gpu_target_part_mask, gpu_pred_dst_dst*gpu_target_part_mask, max_val=1.0)) + gpu_dst_loss += 300 * nn.MsSsim(resolution, kernel_size=5)(gpu_target_dst*gpu_target_part_mask, gpu_pred_dst_dst*gpu_target_part_mask, max_val=1.0) else: gpu_dst_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_dst*gpu_target_part_mask - gpu_pred_dst_dst*gpu_target_part_mask ), axis=[1,2,3]) - # FIXME - # if self.options['ms_ssim_loss']: - # gpu_dst_loss += tf.reduce_mean ( 10*nn.MsSsim(resolution)(gpu_target_dstm, gpu_pred_dst_dstm, max_val=1.0)) - # else: - gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] ) + if self.options['ms_ssim_loss']: + gpu_dst_loss += 10 * nn.MsSsim(resolution)(gpu_target_dstm, gpu_pred_dst_dstm, max_val=1.0) + else: + gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] ) gpu_src_losses += [gpu_src_loss] gpu_dst_losses += [gpu_dst_loss]