mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 05:22:06 -07:00
fix DFLJPG,
SAE: added "rare sample booster" SAE: pixel loss replaced to smooth transition from DSSIM to PixelLoss in 15k epochs by default
This commit is contained in:
parent
f93b4713a9
commit
4d37fd62cd
11 changed files with 174 additions and 101 deletions
|
@ -2,7 +2,7 @@ import traceback
|
|||
import numpy as np
|
||||
import random
|
||||
import cv2
|
||||
|
||||
import multiprocessing
|
||||
from utils import iter_utils
|
||||
|
||||
from samples import SampleType
|
||||
|
@ -18,10 +18,11 @@ output_sample_types = [
|
|||
]
|
||||
'''
|
||||
class SampleGeneratorFace(SampleGeneratorBase):
|
||||
def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, with_close_to_self=False, sample_process_options=SampleProcessor.Options(), output_sample_types=[], generators_count=2, **kwargs):
|
||||
def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, with_close_to_self=False, sample_process_options=SampleProcessor.Options(), output_sample_types=[], add_sample_idx=False, generators_count=2, **kwargs):
|
||||
super().__init__(samples_path, debug, batch_size)
|
||||
self.sample_process_options = sample_process_options
|
||||
self.output_sample_types = output_sample_types
|
||||
self.add_sample_idx = add_sample_idx
|
||||
|
||||
if sort_by_yaw_target_samples_path is not None:
|
||||
self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET
|
||||
|
@ -34,13 +35,15 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
|
||||
self.samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path)
|
||||
|
||||
self.generators_count = min ( generators_count, len(self.samples) )
|
||||
|
||||
if self.debug:
|
||||
self.generators_count = 1
|
||||
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, 0 )]
|
||||
else:
|
||||
self.generators_count = min ( generators_count, len(self.samples) )
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, i ) for i in range(self.generators_count) ]
|
||||
|
||||
|
||||
self.generators_sq = [ multiprocessing.Queue() for _ in range(self.generators_count) ]
|
||||
|
||||
self.generator_counter = -1
|
||||
|
||||
def __iter__(self):
|
||||
|
@ -50,47 +53,73 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
self.generator_counter += 1
|
||||
generator = self.generators[self.generator_counter % len(self.generators) ]
|
||||
return next(generator)
|
||||
|
||||
def batch_func(self, generator_id):
|
||||
samples = self.samples[generator_id::self.generators_count]
|
||||
|
||||
data_len = len(samples)
|
||||
if data_len == 0:
|
||||
|
||||
def repeat_sample_idxs(self, idxs): # [ idx, ... ]
|
||||
#send idxs list to all sub generators.
|
||||
for gen_sq in self.generators_sq:
|
||||
gen_sq.put (idxs)
|
||||
|
||||
def batch_func(self, generator_id):
|
||||
gen_sq = self.generators_sq[generator_id]
|
||||
samples = self.samples
|
||||
samples_len = len(samples)
|
||||
samples_idxs = [ *range(samples_len) ] [generator_id::self.generators_count]
|
||||
repeat_samples_idxs = []
|
||||
|
||||
if len(samples_idxs) == 0:
|
||||
raise ValueError('No training data provided.')
|
||||
|
||||
|
||||
if self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
||||
if all ( [ x == None for x in samples] ):
|
||||
if all ( [ samples[idx] == None for idx in samples_idxs] ):
|
||||
raise ValueError('Not enough training data. Gather more faces!')
|
||||
|
||||
if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF:
|
||||
shuffle_idxs = []
|
||||
shuffle_idxs = []
|
||||
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
||||
shuffle_idxs = []
|
||||
shuffle_idxs_2D = [[]]*data_len
|
||||
|
||||
while True:
|
||||
|
||||
shuffle_idxs = []
|
||||
shuffle_idxs_2D = [[]]*samples_len
|
||||
|
||||
while True:
|
||||
while not gen_sq.empty():
|
||||
idxs = gen_sq.get()
|
||||
for idx in idxs:
|
||||
if idx in samples_idxs:
|
||||
repeat_samples_idxs.append(idx)
|
||||
|
||||
batches = None
|
||||
for n_batch in range(self.batch_size):
|
||||
while True:
|
||||
sample = None
|
||||
|
||||
if len(repeat_samples_idxs) > 0:
|
||||
idx = repeat_samples_idxs.pop()
|
||||
if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF:
|
||||
sample = samples[idx]
|
||||
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
||||
sample = samples[(idx >> 16) & 0xFFFF][idx & 0xFFFF]
|
||||
else:
|
||||
if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF:
|
||||
if len(shuffle_idxs) == 0:
|
||||
shuffle_idxs = samples_idxs.copy()
|
||||
np.random.shuffle(shuffle_idxs)
|
||||
|
||||
if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF:
|
||||
if len(shuffle_idxs) == 0:
|
||||
shuffle_idxs = random.sample( range(data_len), data_len )
|
||||
idx = shuffle_idxs.pop()
|
||||
sample = samples[ idx ]
|
||||
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
||||
if len(shuffle_idxs) == 0:
|
||||
shuffle_idxs = random.sample( range(data_len), data_len )
|
||||
|
||||
idx = shuffle_idxs.pop()
|
||||
if samples[idx] != None:
|
||||
if len(shuffle_idxs_2D[idx]) == 0:
|
||||
shuffle_idxs_2D[idx] = random.sample( range(len(samples[idx])), len(samples[idx]) )
|
||||
idx = shuffle_idxs.pop()
|
||||
sample = samples[ idx ]
|
||||
|
||||
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
||||
if len(shuffle_idxs) == 0:
|
||||
shuffle_idxs = samples_idxs.copy()
|
||||
np.random.shuffle(shuffle_idxs)
|
||||
|
||||
idx = shuffle_idxs.pop()
|
||||
if samples[idx] != None:
|
||||
if len(shuffle_idxs_2D[idx]) == 0:
|
||||
shuffle_idxs_2D[idx] = random.sample( range(len(samples[idx])), len(samples[idx]) )
|
||||
|
||||
idx2 = shuffle_idxs_2D[idx].pop()
|
||||
sample = samples[idx][idx2]
|
||||
|
||||
idx2 = shuffle_idxs_2D[idx].pop()
|
||||
sample = samples[idx][idx2]
|
||||
idx = (idx << 16) | (idx2 & 0xFFFF)
|
||||
|
||||
if sample is not None:
|
||||
try:
|
||||
|
@ -103,10 +132,14 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
|
||||
if batches is None:
|
||||
batches = [ [] for _ in range(len(x)) ]
|
||||
|
||||
if self.add_sample_idx:
|
||||
batches += [ [] ]
|
||||
|
||||
for i in range(len(x)):
|
||||
batches[i].append ( x[i] )
|
||||
|
||||
if self.add_sample_idx:
|
||||
batches[-1].append (idx)
|
||||
|
||||
break
|
||||
|
||||
yield [ np.array(batch) for batch in batches]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue