added XSeg model.

with XSeg model you can train your own mask segmentator of dst(and src) faces
that will be used in merger for whole_face.

Instead of using a pretrained model (which does not exist),
you control which part of faces should be masked.

Workflow is not easy, but at the moment it is the best solution
for obtaining the best quality of whole_face's deepfakes using minimum effort
without rotoscoping in AfterEffects.

new scripts:
	XSeg) data_dst edit.bat
	XSeg) data_dst merge.bat
	XSeg) data_dst split.bat
	XSeg) data_src edit.bat
	XSeg) data_src merge.bat
	XSeg) data_src split.bat
	XSeg) train.bat

Usage:
	unpack dst faceset if packed

	run XSeg) data_dst split.bat
		this scripts extracts (previously saved) .json data from jpg faces to use in label tool.

	run XSeg) data_dst edit.bat
		new tool 'labelme' is used

		use polygon (CTRL-N) to mask the face
			name polygon "1" (one symbol) as include polygon
			name polygon "0" (one symbol) as exclude polygon

			'exclude polygons' will be applied after all 'include polygons'

		Hot keys:
		ctrl-N			create polygon
		ctrl-J			edit polygon
		A/D 			navigate between frames
		ctrl + mousewheel 	image zoom
		mousewheel		vertical scroll
		alt+mousewheel		horizontal scroll

		repeat for 10/50/100 faces,
			you don't need to mask every frame of dst,
			only frames where the face is different significantly,
			for example:
				closed eyes
				changed head direction
				changed light
			the more various faces you mask, the more quality you will get

			Start masking from the upper left area and follow the clockwise direction.
			Keep the same logic of masking for all frames, for example:
				the same approximated jaw line of the side faces, where the jaw is not visible
				the same hair line
			Mask the obstructions using polygon with name "0".

	run XSeg) data_dst merge.bat
		this script merges .json data of polygons into jpg faces,
		therefore faceset can be sorted or packed as usual.

	run XSeg) train.bat
		train the model

		Check the faces of 'XSeg dst faces' preview.

		if some faces have wrong or glitchy mask, then repeat steps:
			split
			run edit
			find these glitchy faces and mask them
			merge
			train further or restart training from scratch

Restart training of XSeg model is only possible by deleting all 'model\XSeg_*' files.

If you want to get the mask of the predicted face in merger,
you should repeat the same steps for src faceset.

New mask modes available in merger for whole_face:

XSeg-prd	  - XSeg mask of predicted face	 -> faces from src faceset should be labeled
XSeg-dst	  - XSeg mask of dst face        -> faces from dst faceset should be labeled
XSeg-prd*XSeg-dst - the smallest area of both

if workspace\model folder contains trained XSeg model, then merger will use it,
otherwise you will get transparent mask by using XSeg-* modes.

Some screenshots:
label tool: https://i.imgur.com/aY6QGw1.jpg
trainer   : https://i.imgur.com/NM1Kn3s.jpg
merger    : https://i.imgur.com/glUzFQ8.jpg

example of the fake using 13 segmented dst faces
          : https://i.imgur.com/wmvyizU.gifv
This commit is contained in:
Colombo 2020-03-15 15:12:44 +04:00
parent 2be940092b
commit 45582d129d
27 changed files with 577 additions and 711 deletions

198
models/Model_XSeg/Model.py Normal file
View file

@ -0,0 +1,198 @@
import multiprocessing
import operator
from functools import partial
import numpy as np
from core import mathlib
from core.interact import interact as io
from core.leras import nn
from facelib import FaceType, TernausNet, XSegNet
from models import ModelBase
from samplelib import *
class XSegModel(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, force_model_class_name='XSeg', **kwargs)
#override
def on_initialize_options(self):
self.set_batch_size(4)
#override
def on_initialize(self):
device_config = nn.getCurrentDeviceConfig()
self.model_data_format = "NCHW" if len(device_config.devices) != 0 and not self.is_debug() else "NHWC"
nn.initialize(data_format=self.model_data_format)
tf = nn.tf
device_config = nn.getCurrentDeviceConfig()
devices = device_config.devices
self.resolution = resolution = 256
self.face_type = FaceType.WHOLE_FACE
place_model_on_cpu = len(devices) == 0
models_opt_device = '/CPU:0' if place_model_on_cpu else '/GPU:0'
bgr_shape = nn.get4Dshape(resolution,resolution,3)
mask_shape = nn.get4Dshape(resolution,resolution,1)
# Initializing model classes
self.model = XSegNet(name=f'XSeg',
resolution=resolution,
load_weights=not self.is_first_run(),
weights_file_root=self.get_model_root_path(),
training=True,
place_model_on_cpu=place_model_on_cpu,
optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'),
data_format=nn.data_format)
if self.is_training:
# Adjust batch size for multiple GPU
gpu_count = max(1, len(devices) )
bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
self.set_batch_size( gpu_count*bs_per_gpu)
# Compute losses per GPU
gpu_pred_list = []
gpu_losses = []
gpu_loss_gvs = []
for gpu_id in range(gpu_count):
with tf.device( f'/GPU:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
with tf.device(f'/CPU:0'):
# slice on CPU, otherwise all batch data will be transfered to GPU first
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
gpu_input_t = self.model.input_t [batch_slice,:,:,:]
gpu_target_t = self.model.target_t [batch_slice,:,:,:]
# process model tensors
gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t)
gpu_pred_list.append(gpu_pred_t)
gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3])
gpu_losses += [gpu_loss]
gpu_loss_gvs += [ nn.gradients ( gpu_loss, self.model.get_weights() ) ]
# Average losses and gradients, and create optimizer update ops
with tf.device (models_opt_device):
pred = nn.concat(gpu_pred_list, 0)
loss = tf.reduce_mean(gpu_losses)
loss_gv_op = self.model.opt.get_update_op (nn.average_gv_list (gpu_loss_gvs))
# Initializing training and view functions
def train(input_np, target_np):
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np })
return l
self.train = train
def view(input_np):
return nn.tf_sess.run ( [pred], feed_dict={self.model.input_t :input_np})
self.view = view
# initializing sample generators
cpu_count = min(multiprocessing.cpu_count(), 8)
src_dst_generators_count = cpu_count // 2
src_generators_count = cpu_count // 2
dst_generators_count = cpu_count // 2
srcdst_generator = SampleGeneratorFaceXSeg([self.training_data_src_path, self.training_data_dst_path],
debug=self.is_debug(),
batch_size=self.get_batch_size(),
resolution=resolution,
face_type=self.face_type,
generators_count=src_dst_generators_count,
data_format=nn.data_format)
src_generator = SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=False),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
generators_count=src_generators_count,
raise_on_no_data=False )
dst_generator = SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=False),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
generators_count=dst_generators_count,
raise_on_no_data=False )
self.set_training_data_generators ([srcdst_generator, src_generator, dst_generator])
#override
def get_model_filename_list(self):
return self.model.model_filename_list
#override
def onSave(self):
self.model.save_weights()
#override
def onTrainOneIter(self):
image_np, mask_np = self.generate_next_samples()[0]
loss = self.train (image_np, mask_np)
return ( ('loss', loss ), )
#override
def onGetPreview(self, samples):
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
srcdst_samples, src_samples, dst_samples = samples
image_np, mask_np = srcdst_samples
I, M, IM, = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([image_np,mask_np] + self.view (image_np) ) ]
M, IM, = [ np.repeat (x, (3,), -1) for x in [M, IM] ]
green_bg = np.tile( np.array([0,1,0], dtype=np.float32)[None,None,...], (self.resolution,self.resolution,1) )
result = []
st = []
for i in range(n_samples):
ar = I[i]*M[i]+0.5*I[i]*(1-M[i])+0.5*green_bg*(1-M[i]), IM[i], I[i]*IM[i]+0.5*I[i]*(1-IM[i]) + 0.5*green_bg*(1-IM[i])
st.append ( np.concatenate ( ar, axis=1) )
result += [ ('XSeg training faces', np.concatenate (st, axis=0 )), ]
if len(src_samples) != 0:
src_np, = src_samples
D, DM, = [ np.clip(nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([src_np] + self.view (src_np) ) ]
DM, = [ np.repeat (x, (3,), -1) for x in [DM] ]
st = []
for i in range(n_samples):
ar = D[i], DM[i], D[i]*DM[i] + 0.5*D[i]*(1-DM[i]) + 0.5*green_bg*(1-DM[i])
st.append ( np.concatenate ( ar, axis=1) )
result += [ ('XSeg src faces', np.concatenate (st, axis=0 )), ]
if len(dst_samples) != 0:
dst_np, = dst_samples
D, DM, = [ np.clip(nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([dst_np] + self.view (dst_np) ) ]
DM, = [ np.repeat (x, (3,), -1) for x in [DM] ]
st = []
for i in range(n_samples):
ar = D[i], DM[i], D[i]*DM[i] + 0.5*D[i]*(1-DM[i]) + 0.5*green_bg*(1-DM[i])
st.append ( np.concatenate ( ar, axis=1) )
result += [ ('XSeg dst faces', np.concatenate (st, axis=0 )), ]
return result
Model = XSegModel