mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-11 15:47:01 -07:00
Added interactive converter.
With interactive converter you can change any parameter of any frame and see the result in real time. Converter: added motion_blur_power param. Motion blur is applied by precomputed motion vectors. So the moving face will look more realistic. RecycleGAN model is removed. Added experimental AVATAR model. Minimum required VRAM is 6GB (NVIDIA), 12GB (AMD) Usage: 1) place data_src.mp4 10-20min square resolution video of news reporter sitting at the table with static background, other faces should not appear in frames. 2) process "extract images from video data_src.bat" with FULL fps 3) place data_dst.mp4 video of face who will control the src face 4) process "extract images from video data_dst FULL FPS.bat" 5) process "data_src mark faces S3FD best GPU.bat" 6) process "data_dst extract unaligned faces S3FD best GPU.bat" 7) train AVATAR.bat stage 1, tune batch size to maximum for your card (32 for 6GB), train to 50k+ iters. 8) train AVATAR.bat stage 2, tune batch size to maximum for your card (4 for 6GB), train to decent sharpness. 9) convert AVATAR.bat 10) converted to mp4.bat updated versions of modules
This commit is contained in:
parent
3f0bf2e994
commit
407ce3b1ca
46 changed files with 2394 additions and 1659 deletions
148
imagelib/blur.py
148
imagelib/blur.py
|
@ -1,143 +1,9 @@
|
|||
import math
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from scipy.signal import convolve2d
|
||||
from skimage.draw import line
|
||||
|
||||
class LineDictionary:
|
||||
def __init__(self):
|
||||
self.lines = {}
|
||||
self.Create3x3Lines()
|
||||
self.Create5x5Lines()
|
||||
self.Create7x7Lines()
|
||||
self.Create9x9Lines()
|
||||
return
|
||||
|
||||
def Create3x3Lines(self):
|
||||
lines = {}
|
||||
lines[0] = [1,0,1,2]
|
||||
lines[45] = [2,0,0,2]
|
||||
lines[90] = [0,1,2,1]
|
||||
lines[135] = [0,0,2,2]
|
||||
self.lines[3] = lines
|
||||
return
|
||||
|
||||
def Create5x5Lines(self):
|
||||
lines = {}
|
||||
lines[0] = [2,0,2,4]
|
||||
lines[22.5] = [3,0,1,4]
|
||||
lines[45] = [0,4,4,0]
|
||||
lines[67.5] = [0,3,4,1]
|
||||
lines[90] = [0,2,4,2]
|
||||
lines[112.5] = [0,1,4,3]
|
||||
lines[135] = [0,0,4,4]
|
||||
lines[157.5]= [1,0,3,4]
|
||||
self.lines[5] = lines
|
||||
return
|
||||
|
||||
def Create7x7Lines(self):
|
||||
lines = {}
|
||||
lines[0] = [3,0,3,6]
|
||||
lines[15] = [4,0,2,6]
|
||||
lines[30] = [5,0,1,6]
|
||||
lines[45] = [6,0,0,6]
|
||||
lines[60] = [6,1,0,5]
|
||||
lines[75] = [6,2,0,4]
|
||||
lines[90] = [0,3,6,3]
|
||||
lines[105] = [0,2,6,4]
|
||||
lines[120] = [0,1,6,5]
|
||||
lines[135] = [0,0,6,6]
|
||||
lines[150] = [1,0,5,6]
|
||||
lines[165] = [2,0,4,6]
|
||||
self.lines[7] = lines
|
||||
return
|
||||
|
||||
def Create9x9Lines(self):
|
||||
lines = {}
|
||||
lines[0] = [4,0,4,8]
|
||||
lines[11.25] = [5,0,3,8]
|
||||
lines[22.5] = [6,0,2,8]
|
||||
lines[33.75] = [7,0,1,8]
|
||||
lines[45] = [8,0,0,8]
|
||||
lines[56.25] = [8,1,0,7]
|
||||
lines[67.5] = [8,2,0,6]
|
||||
lines[78.75] = [8,3,0,5]
|
||||
lines[90] = [8,4,0,4]
|
||||
lines[101.25] = [0,3,8,5]
|
||||
lines[112.5] = [0,2,8,6]
|
||||
lines[123.75] = [0,1,8,7]
|
||||
lines[135] = [0,0,8,8]
|
||||
lines[146.25] = [1,0,7,8]
|
||||
lines[157.5] = [2,0,6,8]
|
||||
lines[168.75] = [3,0,5,8]
|
||||
self.lines[9] = lines
|
||||
return
|
||||
|
||||
lineLengths =[3,5,7,9]
|
||||
lineTypes = ["full", "right", "left"]
|
||||
|
||||
lineDict = LineDictionary()
|
||||
|
||||
def LinearMotionBlur_random(img):
|
||||
lineLengthIdx = np.random.randint(0, len(lineLengths))
|
||||
lineTypeIdx = np.random.randint(0, len(lineTypes))
|
||||
lineLength = lineLengths[lineLengthIdx]
|
||||
lineType = lineTypes[lineTypeIdx]
|
||||
lineAngle = randomAngle(lineLength)
|
||||
return LinearMotionBlur(img, lineLength, lineAngle, lineType)
|
||||
|
||||
def LinearMotionBlur(img, dim, angle, linetype='full'):
|
||||
if len(img.shape) == 2:
|
||||
h, w = img.shape
|
||||
c = 1
|
||||
img = img[...,np.newaxis]
|
||||
elif len(img.shape) == 3:
|
||||
h,w,c = img.shape
|
||||
else:
|
||||
raise ValueError('unsupported img.shape')
|
||||
|
||||
kernel = LineKernel(dim, angle, linetype)
|
||||
|
||||
imgs = []
|
||||
for i in range(c):
|
||||
imgs.append ( convolve2d(img[...,i], kernel, mode='same') )
|
||||
|
||||
img = np.stack(imgs, axis=-1)
|
||||
img = np.squeeze(img)
|
||||
return img
|
||||
|
||||
def LineKernel(dim, angle, linetype):
|
||||
kernelwidth = dim
|
||||
kernelCenter = int(math.floor(dim/2))
|
||||
angle = SanitizeAngleValue(kernelCenter, angle)
|
||||
kernel = np.zeros((kernelwidth, kernelwidth), dtype=np.float32)
|
||||
lineAnchors = lineDict.lines[dim][angle]
|
||||
if(linetype == 'right'):
|
||||
lineAnchors[0] = kernelCenter
|
||||
lineAnchors[1] = kernelCenter
|
||||
if(linetype == 'left'):
|
||||
lineAnchors[2] = kernelCenter
|
||||
lineAnchors[3] = kernelCenter
|
||||
rr,cc = line(lineAnchors[0], lineAnchors[1], lineAnchors[2], lineAnchors[3])
|
||||
kernel[rr,cc]=1
|
||||
normalizationFactor = np.count_nonzero(kernel)
|
||||
kernel = kernel / normalizationFactor
|
||||
return kernel
|
||||
|
||||
def SanitizeAngleValue(kernelCenter, angle):
|
||||
numDistinctLines = kernelCenter * 4
|
||||
angle = math.fmod(angle, 180.0)
|
||||
validLineAngles = np.linspace(0,180, numDistinctLines, endpoint = False)
|
||||
angle = nearestValue(angle, validLineAngles)
|
||||
return angle
|
||||
|
||||
def nearestValue(theta, validAngles):
|
||||
idx = (np.abs(validAngles-theta)).argmin()
|
||||
return validAngles[idx]
|
||||
|
||||
def randomAngle(kerneldim):
|
||||
kernelCenter = int(math.floor(kerneldim/2))
|
||||
numDistinctLines = kernelCenter * 4
|
||||
validLineAngles = np.linspace(0,180, numDistinctLines, endpoint = False)
|
||||
angleIdx = np.random.randint(0, len(validLineAngles))
|
||||
return int(validLineAngles[angleIdx])
|
||||
def LinearMotionBlur(image, size, angle):
|
||||
k = np.zeros((size, size), dtype=np.float32)
|
||||
k[ (size-1)// 2 , :] = np.ones(size, dtype=np.float32)
|
||||
k = cv2.warpAffine(k, cv2.getRotationMatrix2D( (size / 2 -0.5 , size / 2 -0.5 ) , angle, 1.0), (size, size) )
|
||||
k = k * ( 1.0 / np.sum(k) )
|
||||
return cv2.filter2D(image, -1, k)
|
Loading…
Add table
Add a link
Reference in a new issue