Added interactive converter.

With interactive converter you can change any parameter of any frame and see the result in real time.

Converter: added motion_blur_power param.
Motion blur is applied by precomputed motion vectors.
So the moving face will look more realistic.

RecycleGAN model is removed.

Added experimental AVATAR model. Minimum required VRAM is 6GB (NVIDIA), 12GB (AMD)
Usage:
1) place data_src.mp4 10-20min square resolution video of news reporter sitting at the table with static background,
   other faces should not appear in frames.
2) process "extract images from video data_src.bat" with FULL fps
3) place data_dst.mp4 video of face who will control the src face
4) process "extract images from video data_dst FULL FPS.bat"
5) process "data_src mark faces S3FD best GPU.bat"
6) process "data_dst extract unaligned faces S3FD best GPU.bat"
7) train AVATAR.bat stage 1, tune batch size to maximum for your card (32 for 6GB), train to 50k+ iters.
8) train AVATAR.bat stage 2, tune batch size to maximum for your card (4 for 6GB), train to decent sharpness.
9) convert AVATAR.bat
10) converted to mp4.bat

updated versions of modules
This commit is contained in:
iperov 2019-08-24 12:57:29 +04:00
commit 407ce3b1ca
46 changed files with 2394 additions and 1659 deletions

View file

@ -1,26 +1,21 @@
from .estimate_sharpness import estimate_sharpness
from .equalize_and_stack_square import equalize_and_stack_square
from .text import get_text_image
from .text import get_draw_text_lines
from .text import get_text_image, get_draw_text_lines
from .draw import draw_polygon
from .draw import draw_rect
from .draw import draw_polygon, draw_rect
from .morph import morph_by_points
from .warp import gen_warp_params
from .warp import warp_by_params
from .warp import gen_warp_params, warp_by_params
from .reduce_colors import reduce_colors
from .color_transfer import color_hist_match
from .color_transfer import reinhard_color_transfer
from .color_transfer import linear_color_transfer
from .color_transfer import color_hist_match, reinhard_color_transfer, linear_color_transfer
from .DCSCN import DCSCN
from .common import normalize_channels
from .common import normalize_channels, overlay_alpha_image
from .IEPolys import IEPolys

View file

@ -1,143 +1,9 @@
import math
import cv2
import numpy as np
from PIL import Image
from scipy.signal import convolve2d
from skimage.draw import line
class LineDictionary:
def __init__(self):
self.lines = {}
self.Create3x3Lines()
self.Create5x5Lines()
self.Create7x7Lines()
self.Create9x9Lines()
return
def Create3x3Lines(self):
lines = {}
lines[0] = [1,0,1,2]
lines[45] = [2,0,0,2]
lines[90] = [0,1,2,1]
lines[135] = [0,0,2,2]
self.lines[3] = lines
return
def Create5x5Lines(self):
lines = {}
lines[0] = [2,0,2,4]
lines[22.5] = [3,0,1,4]
lines[45] = [0,4,4,0]
lines[67.5] = [0,3,4,1]
lines[90] = [0,2,4,2]
lines[112.5] = [0,1,4,3]
lines[135] = [0,0,4,4]
lines[157.5]= [1,0,3,4]
self.lines[5] = lines
return
def Create7x7Lines(self):
lines = {}
lines[0] = [3,0,3,6]
lines[15] = [4,0,2,6]
lines[30] = [5,0,1,6]
lines[45] = [6,0,0,6]
lines[60] = [6,1,0,5]
lines[75] = [6,2,0,4]
lines[90] = [0,3,6,3]
lines[105] = [0,2,6,4]
lines[120] = [0,1,6,5]
lines[135] = [0,0,6,6]
lines[150] = [1,0,5,6]
lines[165] = [2,0,4,6]
self.lines[7] = lines
return
def Create9x9Lines(self):
lines = {}
lines[0] = [4,0,4,8]
lines[11.25] = [5,0,3,8]
lines[22.5] = [6,0,2,8]
lines[33.75] = [7,0,1,8]
lines[45] = [8,0,0,8]
lines[56.25] = [8,1,0,7]
lines[67.5] = [8,2,0,6]
lines[78.75] = [8,3,0,5]
lines[90] = [8,4,0,4]
lines[101.25] = [0,3,8,5]
lines[112.5] = [0,2,8,6]
lines[123.75] = [0,1,8,7]
lines[135] = [0,0,8,8]
lines[146.25] = [1,0,7,8]
lines[157.5] = [2,0,6,8]
lines[168.75] = [3,0,5,8]
self.lines[9] = lines
return
lineLengths =[3,5,7,9]
lineTypes = ["full", "right", "left"]
lineDict = LineDictionary()
def LinearMotionBlur_random(img):
lineLengthIdx = np.random.randint(0, len(lineLengths))
lineTypeIdx = np.random.randint(0, len(lineTypes))
lineLength = lineLengths[lineLengthIdx]
lineType = lineTypes[lineTypeIdx]
lineAngle = randomAngle(lineLength)
return LinearMotionBlur(img, lineLength, lineAngle, lineType)
def LinearMotionBlur(img, dim, angle, linetype='full'):
if len(img.shape) == 2:
h, w = img.shape
c = 1
img = img[...,np.newaxis]
elif len(img.shape) == 3:
h,w,c = img.shape
else:
raise ValueError('unsupported img.shape')
kernel = LineKernel(dim, angle, linetype)
imgs = []
for i in range(c):
imgs.append ( convolve2d(img[...,i], kernel, mode='same') )
img = np.stack(imgs, axis=-1)
img = np.squeeze(img)
return img
def LineKernel(dim, angle, linetype):
kernelwidth = dim
kernelCenter = int(math.floor(dim/2))
angle = SanitizeAngleValue(kernelCenter, angle)
kernel = np.zeros((kernelwidth, kernelwidth), dtype=np.float32)
lineAnchors = lineDict.lines[dim][angle]
if(linetype == 'right'):
lineAnchors[0] = kernelCenter
lineAnchors[1] = kernelCenter
if(linetype == 'left'):
lineAnchors[2] = kernelCenter
lineAnchors[3] = kernelCenter
rr,cc = line(lineAnchors[0], lineAnchors[1], lineAnchors[2], lineAnchors[3])
kernel[rr,cc]=1
normalizationFactor = np.count_nonzero(kernel)
kernel = kernel / normalizationFactor
return kernel
def SanitizeAngleValue(kernelCenter, angle):
numDistinctLines = kernelCenter * 4
angle = math.fmod(angle, 180.0)
validLineAngles = np.linspace(0,180, numDistinctLines, endpoint = False)
angle = nearestValue(angle, validLineAngles)
return angle
def nearestValue(theta, validAngles):
idx = (np.abs(validAngles-theta)).argmin()
return validAngles[idx]
def randomAngle(kerneldim):
kernelCenter = int(math.floor(kerneldim/2))
numDistinctLines = kernelCenter * 4
validLineAngles = np.linspace(0,180, numDistinctLines, endpoint = False)
angleIdx = np.random.randint(0, len(validLineAngles))
return int(validLineAngles[angleIdx])
def LinearMotionBlur(image, size, angle):
k = np.zeros((size, size), dtype=np.float32)
k[ (size-1)// 2 , :] = np.ones(size, dtype=np.float32)
k = cv2.warpAffine(k, cv2.getRotationMatrix2D( (size / 2 -0.5 , size / 2 -0.5 ) , angle, 1.0), (size, size) )
k = k * ( 1.0 / np.sum(k) )
return cv2.filter2D(image, -1, k)

View file

@ -9,13 +9,28 @@ def normalize_channels(img, target_channels):
h, w, c = img.shape
else:
raise ValueError("normalize: incorrect image dimensions.")
if c == 0 and target_channels > 0:
img = img[...,np.newaxis]
img = img[...,np.newaxis]
if c == 1 and target_channels > 1:
img = np.repeat (img, target_channels, -1)
if c > target_channels:
img = np.repeat (img, target_channels, -1)
if c > target_channels:
img = img[...,0:target_channels]
c = target_channels
return img
return img
def overlay_alpha_image(img_target, img_source, xy_offset=(0,0) ):
(h,w,c) = img_source.shape
if c != 4:
raise ValueError("overlay_alpha_image, img_source must have 4 channels")
x1, x2 = xy_offset[0], xy_offset[0] + w
y1, y2 = xy_offset[1], xy_offset[1] + h
alpha_s = img_source[:, :, 3] / 255.0
alpha_l = 1.0 - alpha_s
for c in range(0, 3):
img_target[y1:y2, x1:x2, c] = (alpha_s * img_source[:, :, c] +
alpha_l * img_target[y1:y2, x1:x2, c])